
Motorcycle Assembly 
Assuming we are using the Matlab license provided by Arduino Kit 
(https://www.mathworks.com/campaigns/products/arduino-kit-rev2-license.html). 

1. Let us make sure the Simulink Support Package for Arduino Hardware is 
installed. Simulink Support Package for Arduino Hardware - File Exchange - 
MATLAB Central (mathworks.com). Download this file and install for each 
machine. 

2. Also download the Matlab Support Package for Arduino Hardware. 
MATLAB Support Package for Arduino Hardware - File Exchange - MATLAB 
Central (mathworks.com). Download this file and install for each machine. 

3. Courses | Arduino Cloud. Log into Arduino account, and access Arduino 
course information at this weblink. The weblink for registering kit is at 
Engineering Kit! (arduino.cc). The class may use the following group 
username and password username: nchunanorobot password: Nan0r0b0t. 

 
  

https://www.mathworks.com/matlabcentral/fileexchange/40312-simulink-support-package-for-arduino-hardware
https://www.mathworks.com/matlabcentral/fileexchange/40312-simulink-support-package-for-arduino-hardware
https://www.mathworks.com/matlabcentral/fileexchange/47522-matlab-support-package-for-arduino-hardware?s_tid=ta_fx_results
https://www.mathworks.com/matlabcentral/fileexchange/47522-matlab-support-package-for-arduino-hardware?s_tid=ta_fx_results
https://app.arduino.cc/courses
https://engineeringkit.arduino.cc/aekr2/module/engineering/lesson/02-getting-started-with-arduino-matlab-and-simulink


Week 12 
1. Open up the kit, and go to the webpage for the Engineering Kit Rev2 Arduino 

Education. 
2. Please check to make sure all parts are in the kit (TA). 
3. Please only use the parts needed for the motorcycle. Other kit contents should not 

be lost so that we are able to build the other projects later. 
4. Two (or more?) sets of screwdrivers are available with the teacher. Please borrow 

and return to the front desk so others may also use the screws. 
5. In this class we are going to make sure that the computers are able to connect to 

the Arduino board, check battery and ensure the inertial motor functions when 
electrically connected to Arduino. 
(https://engineeringkit.arduino.cc/aekr2/module/engineering/lesson/03-
introduction-to-mechatronics). 
https://engineeringkit.arduino.cc/guide/cheatsheet. 

6. If the link cannot be accessed, follow the instructions here. 
7. There are two types of motors in the kit:  

 
Figure 1. DC motors in the AEK. 
8. We are going to work with the Micro geared DC Motor with Encoder (the rear 

wheel motor) which has the following pinouts. 
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BASICS OF MECHATRONICS
Go through a detailed explanation about the various electronic components such as DC

Motors IMU Sensors, Servo motors PWM signals, Li-Po batteries and key mechatronic

concepts such as motor characteristization and designing a control system.

3.1 DC Motors
DC motors are an integral component in all the projects included in this Kit and therefore its

good to know the technical details of the subcomponents and the underlying electronic

concepts used to run the DC motor.

This section covers

Direct Current Motors

A DC (Direct Current) motor is a type of motor that will cause the motor shaft to rotate

around its longitudinal axis when applying an electric current between its terminal pins.

Thus, the DC motor is a type of actuator that transforms electrical current into rotational

motion.

Parts of the DC Motor

There are two parts inside a motor: the rotor (the shaft is part of this) and the stator. Looking

at the cross-section of a motor, you can see that the rotor is the moving part and the stator is

the static part. The stator and the rotor use both permanent magnets and electromagnets.

Depending on the type of motor, the stator can be a permanent magnet while the rotor is an

electromagnet, or vice-versa. Turning on the electromagnet creates attraction and repulsion

forces that make the motor spin.

How Does it Work

The DC motor spins when we apply DC voltage through its two terminal pins. We can vary the

speed of the motor by changing the voltage level. Also, motors can run freely in both

directions just by reversing the direction of the current. DC motors alone are not very good

for precise movement, but they can provide very high rotational speeds.

Characterstics of Motors

When searching for a DC motor, there are some parameters that you should look for in the

motor’s datasheet:

Driving DC Motors

When controlling motors from a microcontroller, it is not recommended to connect the

output pins of the microcontroller directly to the motor terminals as the motor’s current

demand can damage the chip. In addition, most electric motors need a higher voltage than

the one that can be provided by a microcontroller. To control a DC motor from a

microcontroller without damaging the microcontroller, you’ll need to use a circuit in between

called driver. This can be a transistor, a relay or an H-Bridge. The Arduino Nano Motor

Carrier uses H-Bridges to drive the DC motors.

The H-Bridge

An H-Bridge is an electronic circuit that allows us to change the current direction applied to a

load. They are commonly used as motor drivers to change the direction and the speed of a

DC motor and to manage the higher power since microcontrollers usually don’t have enough

current to power an electric motor. For example, In this kit we will use the H bridges in the

Arduino Nano Motor Carrier to provide 12V to our motors while safely controlling them with

3.3V signals from the microcontroller.

The H-Bridge contains four transistors arranged so that the current can be driven to control

the direction of the spin and the angular speed. These transistors behave as four switches

that are controlled in pairs. The current flows in a different direction depending on which

switches are activated. This allows the direction of the motor itself to be controlled.

The image above shows a simplified version of the internal structure of an H-bridge and how

the switches can be controlled to change the motor’s direction. Switches in the above

diagram are transistors that are controlled by the microcontroller on the Motor Carrier. If we

consider a logical HIGH level when the switch is closed and LOW level when the switch is

opened, we have the following behavior.

Signal Control A Signal Control B Movement

HIGH LOW Clockwise

LOW HIGH Counter-Clockwise

LOW LOW Slow Stop

HIGH HIGH Fast Stop

H-Bridges in the Kit

The current that a motor consumes is proportional to its torque. Usually, the motors indicate

maximum consumption for maximum torque (e.g., 1.5A for 19.61Nm). When choosing an H-

Bridge, it is important to select one with a current rate that is higher than your motor

consumption. If the motor consumes more current than the H-Bridge can supply, it may lead

to overcurrent damage. In this kit, we are going to use 4 H bridges chips located in the top

side of the Motor Carrier: The chips are controlled through I2C via the SAMD11

microcontroller present in the Motor Carrier. This driver has a current sense resistor that

limits the amount of current the chip can drive to prevent it from damage due to current

spikes. In the Motor Carrier, the current is limited to 1.5A.

Controlling Speed : Pulse Width Modulation

We can change the speed of a motor by controlling the voltage level in its terminals, The

higher the voltage applied, the faster the motor spins. It is common practice to use a digital

signal called PWM (Pulse Width Modulation) to control the speed of a motor instead of

providing analog voltages. This is possible because since the motor cannot change speed so

fast, it acts as a low pass filter and it behaves as if it is receiving the average (analog) value of

the voltage and current being applied.

Pulse Width Modulation, or PWM, is a digital modulation technique that consists of changing

the width of a signal’s pulse at a fixed frequency. The width of the pulse is referred to as the

duty-cycle and goes from 0% (minimum width) to 100% (maximum width).

To visualize how PWM functions, let's look at an LED. When an LED turns on, it doesn’t

immediately go from OFF to fully ON. Instead, it starts as OFF and glows brighter. It’s almost

instantaneous and not visible to the naked eye. But if you could turn off the LED before it

reached 100% brightness, and then keep switching it on and off without ever letting the LED

reach its maximum output, then the LED will glow less. Doing this repeatedly and quickly

enough will make the LED look like it is only glowing at 25% of its full brightness. This

switching is the “pulse” part of the PWM—pulsing on and off. It should be also noted that the

human eye is also of a low-pass nature, and that contributes to the enhancement of this

effect.

The same premise applies to a DC motor. In order to reduce the speed of the motor, you can

lower the duty cycle of the PWM signal that goes to the motor driver. The motor’s inertia (its

inability to immediately stop when no more energy is being provided) combined with the

properties of coils (that don’t allow for sudden changes of current within the coils), is what

contributes to PWM being able to control the speed. Many H-bridges allows you to control

the speed (and direction) of the motors using a PWM signal:

PWM in Microcontrollers

Most microcontrollers have the capability to generate dedicated PWM signals. Typically, not

all the digital pins have this secondary option, so you must check the datasheet if you need a

PWM signal to see which pins have this capability. There are also libraries that you can use to

generate “software” PWM signals in any GPIO (General Purpose Input/Output) pin.

In the Arduino boards, PWM pins are denoted with a “tilde” ~ symbol next to the pin number.

On an Arduino Nano 33 IoT, the pins are 2, 3, 5, 6, 9, 10, 11 and 12.

In this kit we will be using PWM signals to control the speed of all the DC motors in the three

projects.

To Learn More

Read more about PWM and how to generate PWM signals from an Arduino board below.

Reading Motor Speed

Motor speed is calculated by using a special device called as Magnetic encoders or simply as

encoders. Encoders sensors that can report information about the rotation speed and the

spinning direction of the motor when mounted on a motor. A common way to use magnetic

encoders is to attach them to the motors driving the wheels of a robot. In doing so, the

sensor will be able to detect the speed of the robot, the direction (angular rotation direction),

and the distance traveled (by knowing the robot’s wheel radius). The DC motors in this kit

comes with Hall Sensor based encoders which are nothing but a module with two Hall-effect

sensors and magnetic discs.

Hall Sensor Based Encoders

A Hall effect sensor is capable of detecting the Hall effect. This consists of the production

of a voltage difference across an electrical conductor when a magnetic field is applied. As the

motor turns, the disc rotates past the sensors. Each time a magnetic pole passes a sensor,

the encoder outputs a digital pulse, also called a “tick”. By counting the frequency of those

ticks, the speed of the motor can be determined.

Encoder Output Signals

The encoder has two outputs, one for each Hall effect sensor. The sensors are positioned so

that there is a phase of 90 degrees between them. This means that the square wave outputs

of the two Hall effect sensors on one encoder are 90 degrees out of phase. This is called a

quadrature output.

The picture above shows the typical output of an encoder. Having the output pulsing 90

degrees out of phase allows the direction of the motor’s rotation to be determined. If output

A is ahead of output B, the motor is turning forward. If output A is behind output B, the

motor is turning backward.

As explained earlier, by measuring the frequency of the pulse signal in A or B (in this case it’s

not important from which one), we will obtain the speed at which the motor is turning. This

information can then be used to obtain linear speed (e.g., the speed of a vehicle).

DC Motors in the Kit

In this kit we will use two micro DC motors with a gearbox (100:1), an encoder and a bigger

DC motor. The small geared motors will be used to move the wheels of the rover, to lift the

drawing robot, and to drive the motorcycle forwards and backwards. The bigger DC motor

(without gearbox) will be used to move the inertia wheel in the motorcycle project.

DC Motor with Encoder

This simple yet powerful DC motor is used to rotate heavier objects like the inertia wheel of

the Self-Balancing Motorcycle. It also contains an encoder and a magnet attached to the shaft

of the motor.

The specs of the bigger motor are:

Micro Geared DC Motors with Encoders

For some projects, you might need more torque or the ability to slow down your motor’s

speed. To achieve this, this micro geared motor comes with a gearbox. Gearboxes come in

different reduction rates (e.g., 1:100, 1:1000, etc.). The rule of thumb is the higher the

reduction rate the more torque you get, and the slower the maximum resulting speed.

The specs of the micro motors with the encoder are:

Note: According to the datasheet, the micromotor encoder has 3 PPR (Pulses per

revolution) provided by the two hall sensors which are 90 degrees out of phase. Since

each pulse has 4 ticks, then each rotation has 12 ticks. However, since the final shaft

requires 100 revolutions of the motor shaft to rotate a complete 360°, we need to

multiple this by 100 (the gearbox ratrio). Thus, the ticks per revolution for the rotation

provided by the final shaft is 1200. This will be the effective ticks per revolution that will

be used in the projects.

Pinouts of the DC Motors

There are two pieces of hardware involved in measuring the rotational angle of the motor.

First, the rotary encoder hardware, attached to the motor shaft, consists of an integrated

circuit, which remains stationary, and a magnetic disk, which rotates along with the motor

shaft. As the magnetic poles rotate relative to the chip, they act on two electromagnetics

within the chip such that they generate two digital signals A and B with the quadrature form

discussed later in this chapter. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip, as shown in the image below. The wires GND and VCC are for

ground and voltage input, respectively. They will be connected to a supply voltage source so

that current can be provided to generate the A and B signals.

Second, the Arduino Nano Motor Carrier contains a data buffer for each of the two encoder

ports. Each time the A or B signal changes from the encoder chip, the value in the data buffer

is incremented or decremented by one. The resulting integer value is the encoder count,

What a DC motor is,

The different parts of the DC Motor,

About the general characteristics of DC Motors,

Driving DC Motors using H bridges,

Controlling the Speed of DC Motors with PWM,

Reading the speed of the motors through encoders.

Speed: This is commonly presented in RPM (Revolutions per minute), and it gives you a

reference of how fast the motor can spin. Keep in mind that some parameters are

measured under specific conditions. If you add a load to the motor, the motor will go

slower, so you might have to customize your motor speed to your particular project. In

the datasheets, this parameter is commonly measured as no load. This indicates the

maximum speed the motor can reach.

Stall Torque: This is commonly presented in kg-cm and sometimes in Newton-meters,

and it gives you a frame of reference for the maximum strength of the motor (i.e., when

the motor can no longer rotate because of overload).

Stall current: The amount of electric current in Amperes that is consumed by the motor

under a maximum load (stall).

Operating voltage: The range of voltages that the motor is designed to work within.

Arduino’s reference: analogWrite

Arduino’s reference: description of PWM

Arduino’s reference: the secrets of Arduino’s PWM

Speed (No load): 7500 RPM

Stall torque: 150g-cm

Speed (No load): 320 RPM

Stall Torque: 2.2 Kg-cm

Gear ratio: 100:1

Ticks per revolution (without gearbox): 12

Ticks per revolution (when accounting for gearbox): 1200
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Figure 2. Pinouts for the micro geared DC inertial motor. 
9. To have the kit function, 18650 type batteries are to be used: these are 3.7 V, 

2500-2600 mAh. For a discharge rating of 5 C, the total current from the battery is 
2500 mAh * 5 C = 12,500 mA. The maximum current discharge for these batteries 
should be at 20 A, and the battery weighs ~43.8 g. Please pay attention to polarity 
of the battery when installing to motorcycle. 

10. The battery is important because we need the extra voltage to help drive the DC 
motors. The board itself is not sufficient to provide the power needed. 

Figure 3. Wiring schematic for the micro geared DC inertial motor. 
11. Connect the Arduino board correctly to the motor carrier as in Figure 4. Following 
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BASICS OF MECHATRONICS
Go through a detailed explanation about the various electronic components such as DC

Motors IMU Sensors, Servo motors PWM signals, Li-Po batteries and key mechatronic

concepts such as motor characteristization and designing a control system.

3.1 DC Motors
DC motors are an integral component in all the projects included in this Kit and therefore its

good to know the technical details of the subcomponents and the underlying electronic

concepts used to run the DC motor.

This section covers

Direct Current Motors

A DC (Direct Current) motor is a type of motor that will cause the motor shaft to rotate

around its longitudinal axis when applying an electric current between its terminal pins.

Thus, the DC motor is a type of actuator that transforms electrical current into rotational

motion.

Parts of the DC Motor

There are two parts inside a motor: the rotor (the shaft is part of this) and the stator. Looking

at the cross-section of a motor, you can see that the rotor is the moving part and the stator is

the static part. The stator and the rotor use both permanent magnets and electromagnets.

Depending on the type of motor, the stator can be a permanent magnet while the rotor is an

electromagnet, or vice-versa. Turning on the electromagnet creates attraction and repulsion

forces that make the motor spin.

How Does it Work

The DC motor spins when we apply DC voltage through its two terminal pins. We can vary the

speed of the motor by changing the voltage level. Also, motors can run freely in both

directions just by reversing the direction of the current. DC motors alone are not very good

for precise movement, but they can provide very high rotational speeds.

Characterstics of Motors

When searching for a DC motor, there are some parameters that you should look for in the

motor’s datasheet:

Driving DC Motors

When controlling motors from a microcontroller, it is not recommended to connect the

output pins of the microcontroller directly to the motor terminals as the motor’s current

demand can damage the chip. In addition, most electric motors need a higher voltage than

the one that can be provided by a microcontroller. To control a DC motor from a

microcontroller without damaging the microcontroller, you’ll need to use a circuit in between

called driver. This can be a transistor, a relay or an H-Bridge. The Arduino Nano Motor

Carrier uses H-Bridges to drive the DC motors.

The H-Bridge

An H-Bridge is an electronic circuit that allows us to change the current direction applied to a

load. They are commonly used as motor drivers to change the direction and the speed of a

DC motor and to manage the higher power since microcontrollers usually don’t have enough

current to power an electric motor. For example, In this kit we will use the H bridges in the

Arduino Nano Motor Carrier to provide 12V to our motors while safely controlling them with

3.3V signals from the microcontroller.

The H-Bridge contains four transistors arranged so that the current can be driven to control

the direction of the spin and the angular speed. These transistors behave as four switches

that are controlled in pairs. The current flows in a different direction depending on which

switches are activated. This allows the direction of the motor itself to be controlled.

The image above shows a simplified version of the internal structure of an H-bridge and how

the switches can be controlled to change the motor’s direction. Switches in the above

diagram are transistors that are controlled by the microcontroller on the Motor Carrier. If we

consider a logical HIGH level when the switch is closed and LOW level when the switch is

opened, we have the following behavior.

Signal Control A Signal Control B Movement

HIGH LOW Clockwise

LOW HIGH Counter-Clockwise

LOW LOW Slow Stop

HIGH HIGH Fast Stop

H-Bridges in the Kit

The current that a motor consumes is proportional to its torque. Usually, the motors indicate

maximum consumption for maximum torque (e.g., 1.5A for 19.61Nm). When choosing an H-

Bridge, it is important to select one with a current rate that is higher than your motor

consumption. If the motor consumes more current than the H-Bridge can supply, it may lead

to overcurrent damage. In this kit, we are going to use 4 H bridges chips located in the top

side of the Motor Carrier: The chips are controlled through I2C via the SAMD11

microcontroller present in the Motor Carrier. This driver has a current sense resistor that

limits the amount of current the chip can drive to prevent it from damage due to current

spikes. In the Motor Carrier, the current is limited to 1.5A.

Controlling Speed : Pulse Width Modulation

We can change the speed of a motor by controlling the voltage level in its terminals, The

higher the voltage applied, the faster the motor spins. It is common practice to use a digital

signal called PWM (Pulse Width Modulation) to control the speed of a motor instead of

providing analog voltages. This is possible because since the motor cannot change speed so

fast, it acts as a low pass filter and it behaves as if it is receiving the average (analog) value of

the voltage and current being applied.

Pulse Width Modulation, or PWM, is a digital modulation technique that consists of changing

the width of a signal’s pulse at a fixed frequency. The width of the pulse is referred to as the

duty-cycle and goes from 0% (minimum width) to 100% (maximum width).

To visualize how PWM functions, let's look at an LED. When an LED turns on, it doesn’t

immediately go from OFF to fully ON. Instead, it starts as OFF and glows brighter. It’s almost

instantaneous and not visible to the naked eye. But if you could turn off the LED before it

reached 100% brightness, and then keep switching it on and off without ever letting the LED

reach its maximum output, then the LED will glow less. Doing this repeatedly and quickly

enough will make the LED look like it is only glowing at 25% of its full brightness. This

switching is the “pulse” part of the PWM—pulsing on and off. It should be also noted that the

human eye is also of a low-pass nature, and that contributes to the enhancement of this

effect.

The same premise applies to a DC motor. In order to reduce the speed of the motor, you can

lower the duty cycle of the PWM signal that goes to the motor driver. The motor’s inertia (its

inability to immediately stop when no more energy is being provided) combined with the

properties of coils (that don’t allow for sudden changes of current within the coils), is what

contributes to PWM being able to control the speed. Many H-bridges allows you to control

the speed (and direction) of the motors using a PWM signal:

PWM in Microcontrollers

Most microcontrollers have the capability to generate dedicated PWM signals. Typically, not

all the digital pins have this secondary option, so you must check the datasheet if you need a

PWM signal to see which pins have this capability. There are also libraries that you can use to

generate “software” PWM signals in any GPIO (General Purpose Input/Output) pin.

In the Arduino boards, PWM pins are denoted with a “tilde” ~ symbol next to the pin number.

On an Arduino Nano 33 IoT, the pins are 2, 3, 5, 6, 9, 10, 11 and 12.

In this kit we will be using PWM signals to control the speed of all the DC motors in the three

projects.

To Learn More

Read more about PWM and how to generate PWM signals from an Arduino board below.

Reading Motor Speed

Motor speed is calculated by using a special device called as Magnetic encoders or simply as

encoders. Encoders sensors that can report information about the rotation speed and the

spinning direction of the motor when mounted on a motor. A common way to use magnetic

encoders is to attach them to the motors driving the wheels of a robot. In doing so, the

sensor will be able to detect the speed of the robot, the direction (angular rotation direction),

and the distance traveled (by knowing the robot’s wheel radius). The DC motors in this kit

comes with Hall Sensor based encoders which are nothing but a module with two Hall-effect

sensors and magnetic discs.

Hall Sensor Based Encoders

A Hall effect sensor is capable of detecting the Hall effect. This consists of the production

of a voltage difference across an electrical conductor when a magnetic field is applied. As the

motor turns, the disc rotates past the sensors. Each time a magnetic pole passes a sensor,

the encoder outputs a digital pulse, also called a “tick”. By counting the frequency of those

ticks, the speed of the motor can be determined.

Encoder Output Signals

The encoder has two outputs, one for each Hall effect sensor. The sensors are positioned so

that there is a phase of 90 degrees between them. This means that the square wave outputs

of the two Hall effect sensors on one encoder are 90 degrees out of phase. This is called a

quadrature output.

The picture above shows the typical output of an encoder. Having the output pulsing 90

degrees out of phase allows the direction of the motor’s rotation to be determined. If output

A is ahead of output B, the motor is turning forward. If output A is behind output B, the

motor is turning backward.

As explained earlier, by measuring the frequency of the pulse signal in A or B (in this case it’s

not important from which one), we will obtain the speed at which the motor is turning. This

information can then be used to obtain linear speed (e.g., the speed of a vehicle).

DC Motors in the Kit

In this kit we will use two micro DC motors with a gearbox (100:1), an encoder and a bigger

DC motor. The small geared motors will be used to move the wheels of the rover, to lift the

drawing robot, and to drive the motorcycle forwards and backwards. The bigger DC motor

(without gearbox) will be used to move the inertia wheel in the motorcycle project.

DC Motor with Encoder

This simple yet powerful DC motor is used to rotate heavier objects like the inertia wheel of

the Self-Balancing Motorcycle. It also contains an encoder and a magnet attached to the shaft

of the motor.

The specs of the bigger motor are:

Micro Geared DC Motors with Encoders

For some projects, you might need more torque or the ability to slow down your motor’s

speed. To achieve this, this micro geared motor comes with a gearbox. Gearboxes come in

different reduction rates (e.g., 1:100, 1:1000, etc.). The rule of thumb is the higher the

reduction rate the more torque you get, and the slower the maximum resulting speed.

The specs of the micro motors with the encoder are:

Note: According to the datasheet, the micromotor encoder has 3 PPR (Pulses per

revolution) provided by the two hall sensors which are 90 degrees out of phase. Since

each pulse has 4 ticks, then each rotation has 12 ticks. However, since the final shaft

requires 100 revolutions of the motor shaft to rotate a complete 360°, we need to

multiple this by 100 (the gearbox ratrio). Thus, the ticks per revolution for the rotation

provided by the final shaft is 1200. This will be the effective ticks per revolution that will

be used in the projects.

Pinouts of the DC Motors

There are two pieces of hardware involved in measuring the rotational angle of the motor.

First, the rotary encoder hardware, attached to the motor shaft, consists of an integrated

circuit, which remains stationary, and a magnetic disk, which rotates along with the motor

shaft. As the magnetic poles rotate relative to the chip, they act on two electromagnetics

within the chip such that they generate two digital signals A and B with the quadrature form

discussed later in this chapter. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip, as shown in the image below. The wires GND and VCC are for

ground and voltage input, respectively. They will be connected to a supply voltage source so

that current can be provided to generate the A and B signals.

Second, the Arduino Nano Motor Carrier contains a data buffer for each of the two encoder

ports. Each time the A or B signal changes from the encoder chip, the value in the data buffer

is incremented or decremented by one. The resulting integer value is the encoder count,

What a DC motor is,

The different parts of the DC Motor,

About the general characteristics of DC Motors,

Driving DC Motors using H bridges,

Controlling the Speed of DC Motors with PWM,

Reading the speed of the motors through encoders.

Speed: This is commonly presented in RPM (Revolutions per minute), and it gives you a

reference of how fast the motor can spin. Keep in mind that some parameters are

measured under specific conditions. If you add a load to the motor, the motor will go

slower, so you might have to customize your motor speed to your particular project. In

the datasheets, this parameter is commonly measured as no load. This indicates the

maximum speed the motor can reach.

Stall Torque: This is commonly presented in kg-cm and sometimes in Newton-meters,

and it gives you a frame of reference for the maximum strength of the motor (i.e., when

the motor can no longer rotate because of overload).

Stall current: The amount of electric current in Amperes that is consumed by the motor

under a maximum load (stall).

Operating voltage: The range of voltages that the motor is designed to work within.

Arduino’s reference: analogWrite

Arduino’s reference: description of PWM

Arduino’s reference: the secrets of Arduino’s PWM

Speed (No load): 7500 RPM

Stall torque: 150g-cm

Speed (No load): 320 RPM

Stall Torque: 2.2 Kg-cm

Gear ratio: 100:1

Ticks per revolution (without gearbox): 12

Ticks per revolution (when accounting for gearbox): 1200
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that let’s connect the micro geared DC motor wires to the Arduino NanoIoT33 
board. Use for example the M1 motor connections. 

Figure 4. Connect the Arduino board correctly to the motor carrier. 
12. Plug the USB cable into computer, turn the on-off switch to “On” position and 

ensure the LED is lit. 

Figure 5. Wires from motor and battery are connected to the motor carrier board. The 
on-off switch remains in the “Off” position. 
13. To make any mounting changes, turn off the switch. 
14. Once Arduino is connected, type the following commands into Matlab command 

line: 

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.
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15. The following command creates a carrier object in the Matlab workspace 
associated with the Arduino object. 

 

16. The next, third object, gives control of the motor connected to M1 in Matlab. Use 
the following command to create a DC motor object that is associated with the 
Carrier object, and examine the displayed object properties in the Command 
Window. 

  

17. Now it is possible to drive the motor. The dcmotor() object has three properties: 
MotorNumber, Speed and Running. The Speed can be changed from -1 to 1. 
IsRunning is controlled with start and stop. Try the following commands. 

  
18. Next we are going to characterize the DC motor. 
19. Set up as before. 

 
20. The encoder count buffer can be read and note the result. 

 
21. The geometry of this encoder is such that there are three full cycles of quadrature 

when the motor shaft turns one full revolution. Recall that the quadrature signals 

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.
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gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.



undergo four total changes in a full cycle. This means that there are 12 quadrature 
signal changes per revolution for the motor shaft. Thus, we can measure the 
angular position of the motor shaft with a resolution of 30 degrees, if we know the 
encoder count. Manually rotate the magnetic disk one full clockwise revolution 
(when looking down on the magnetic disk), and read the encoder count again with 
the previous command. 

22. Note that switching the polarity of Out A and Out B would reverse the sign of the 
count readings. 

23. Check again by rotating a full rotation and then check the counts. 

 
24. The gear motor has a gear ratio of 100:1. Use the following commands to get the 

angle of the output shaft in degrees, and then normalize to the range of 0 to 360 
degrees. 

 

25. We can determine the speed of the output shaft in rpm and in degrees per second. 

 

26. Now we are going to write a livescript to characterize the motor. Input the 
following code. 

 

27. Run the livescript and examine the Workspace. There should be a vector 
containing numbers ranging from -1 to 1 with 0.05 increments. This is going to be 
used to generate the PWM signal applied to DC motor. 

28. The next line of the livescript prepares the motor. 

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.
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Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.



 
29. Now let’s add a section to start the motor with PWM value, read the motor speed, 

and then stop the motor. 

 
30. Try running this section with different values of PWMcmdRaw and examine the 

Matlab Workspace. 
31. Now update the third section with a for loop. 

 
32. At this point, the livescript should be giving a warning to the assignment on 

speedRaw(ii). This warning appears because the script is assigning values to 
increasing indices of speedRaw, and as a result speedRaw needs to increase its 
size on every iteration to accommodate the new element. In some cases, this can 
lead to performance issues because the variable’s memory may need to be 
reallocated many times. You can solve this problem by defining the vector in 
advance with the zeros function to allocate space for speedRaw before populating 
the vector with values. Make the update and test to ensure the code works. 

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.



 
33. Now let’s plot the Measured Speed versus the PWM Duty Cycle. 

 

34. A plot should open up in the output column of the Live Editor. Notice the features 
of the speed-PWM relationship. 

35. Next try to examine speedRaw directly in the command line. 

 
36. You can also compare to a first-order difference to see where non-increasing 

values are located. 

 
37. Let’s write a new section to perform post processing on the data. 

 
38. The following command allows to compare the raw and filtered values. 

 

39. When finished with this task, create a section to delete device objects. 

 
40. The next task is to work with Matlab functions. Let’s create a Live Function. 
41. The inputs and outputs to the function need to be determined and these inputs are 

Note: In this case we are not following the naming convention for the cable colors. In

the coming chapters, just follow the illustrations to know where to connect the cables.

The four wires called GND, OUT A, OUT B and VCC are related to the rotary encoder itself.

The two wires labelled M+ and M- connect directly to the motor drive leads, which are hidden

under the rotary encoder chip. Locate the ends of the two motor drive wires.

Torque is delivered to the motor by applying a voltage across these two wires. The magnitude

of the voltage corresponds to the amount of torque applied, and the sign of the voltage is

analogous to the direction of the applied torque.

The Basic Setup

Make sure you disconnect the USB cable between Arduino Nano 33 IoT and your computer,

ensure that the Motor Carrier's switch is in OFF position and the battery is placed correctly

on the battery holder.

Attach the Arduino Nano 33 IoT

Then attach the Motor Carrier to the Arduino Nano 33 IoT board. You can do this by aligning

the corresponding pin labels and pressing down on the board firmly.

Note: It is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Attach the Motor

On the Motor Carrier, locate the headers for DC motor M1. You should see the labels M1+

and M1- printed on the Motor Carrier board next to the corresponding screw terminals.

Connect the remaining cables to the corresponding terminals as shown in the figure below.

Connect the Battery

Now locate your LiPo (Lithium Polymer) battery and attach it to the battery header on the

Motor Carrier as shown. Ensure that the black wire is aligned with GND and the red one is

aligned with VIN to ensure the correct polarity:

Plug in the USB cable again, switch the Motor Carrier power switch to ON, and ensure that

the nearby LED illuminates.

Note: it is strongly recommended that to perform any operation of mounting or

removing parts from a circuit, you always disconnect them from both power sources

(battery and the USB cable).

Running the Motor

Next, you will access the Arduino Nano Motor Carrier through MATLAB so that you can use

the DC motor and rotary encoder. You will need access to the Arduino Nano Motor Carrier,

which is a board that interfaces the Arduino Nano 33 IoT with up to four DC motors, up to

two rotary encoders, and up to four servo motors, as explained earlier. In this example we

will use one DC motor and one rotary encoder.

Note: If you haven't done the basic setup, we recommend you to complete the Basic

Setup step before you continue with the MATLAB setup.

Initialise the Arduino object

Open MATLAB and ensure that the Arduino Nano Motor Carrier board's power source is

switched ON. You must re-establish your MATLAB connection to Arduino. Execute the

following commands to do so:

>> clear a
>> a = arduino

Initialize the Motor Carrier Object

Now let's create a second MATLAB object to provide access to the Arduino Nano Motor

Carrier. Use the following command to create a Carrier object in the MATLAB Workspace that

is associated with the Arduino object a :

>> carrier = motorCarrier(a)

Just as the Arduino Nano Motor Carrier provides a physical interface between the motor

drive wiring and the Arduino Nano 33 IoT, the carrier object is an intermediary between the

Arduino object and the DC and servo motors we may connect.

Controlling the DC Motor

Now let's create a third object to give you control of the motor connected to M1 in MATLAB.

Use the following command to create a DC Motor object that is associated with the Carrier

object, and examine the displayed object properties in the Command Window:

>> dcm = dcmotor(carrier,'M1')

Now you can drive the motor. You can see that the dcmotor() object has three properties:

MotorNumber , Speed  and Running . You can change the Speed  property directly by

assigning values between -1 and 1. You can control the IsRunning  property using the

methods start and stop. Try the following commands to control the motor speed:

>> start(dcm)
>> dcm.Speed = 0.5;
>> dcm.Speed = 0.3;
>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;
>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

The voltage applied to the DC motor is controlled by a PWM signal. The magnitude of

dcm.Speed  indicates the duty cycle of the PWM signal. When dcm.Speed  is positive, the

PWM signal multiplies with the battery's potential difference to produce some positive

fraction of the battery's voltage rating. When dcm.Speed  is negative, the same

multiplication occurs, but the "reference" and "ground" voltages are reversed in the circuitry.

As a result, a negative fraction of the battery's voltage rating is applied to the motor and

hence a negative torque is obtained.

You may have observed that there is a dead band when dcm.Speed  is very close to 0. This

is because the applied torque is not large enough to overcome the static friction in the

various axles in the gearbox. This is something that should be considered when designing a

motor control system.

Controlling the Position and Speed

The position and the speed of the DC motor can be controlled by using values read through

the Rotary encoder attached to the motor. These values are generated by the signals

produced by the HAL sensor. These signals correspond to the wires labelled OUT A and OUT

B on the rotary encoder chip. The wires GND and VCC are for ground and voltage input,

respectively. They will be connected to a supply voltage source so that current can be

provided to generate the A and B signals.

Note: If you haven't connected your DC motor to the Arduino Nano Motor Carrier, go

through the steps in The Basic Setup section before you proceed.

Switch the Arduino Nano Motor Carrier power to OFF and disconnect the USB cable. Attach

the encoder wires to the corresponding screw terminals for encoder port 1 (labeled 5V, HB1,

HA1, and GND).

Create a MATLAB Object

Connect the USB cable and power on the Arduino Nano Motor Carrier and then create a

MATLAB object to access the rotary encoder count buffer at encoder port 1, using the

following commands:

>> clear a carrier
>> a = arduino
>> carrier = motorCarrier(a)
>> dcm = dcmotor(carrier,'M1')
>> enc = rotaryEncoder(carrier,1)

To read the encoder count buffer, use the following command, and note the result:

>> readCount(enc)

The geometry of this encoder is such that there are three full cycles of quadrature when the

motor shaft turns one full revolution. Recall that the quadrature signals undergo four total

changes in a full cycle. This means that there are 12 quadrature signal changes per revolution

for the motor shaft. Thus, we can measure the angular position of the motor shaft with a

resolution of 30 degrees, if we know the encoder count. Manually rotate the magnetic disk

one full clockwise revolution (when looking down on the magnetic disk), and read the

encoder count again:

>> readCount(enc)

What is the change in encoder count? If your encoder was wired as instructed, you should

have seen the count increase between readings. If the OUT A and OUT B pins on the encoder

were wired the opposite way, the count would have decreased between readings. From a

purely electrical point of view, there is no right or wrong way to wire the encoder; you just

need to be aware of this fact and take it into account when you calibrate the sensor.

Just to confirm that everything works as expected, rotate the magnetic disk one full

counterclockwise revolution. What is the change in encoder count? Once more, if the encoder

was wired as instructed, the values would decrease between readings; if the wiring was the

opposite, the values would increase. If your application uses only changes in rotation over a

span of time, then it does not matter what the initial value is in the encoder count buffer.

However, if your application requires knowledge of absolute rotation from the start of

execution, it is useful to reset the count to zero. Enter the following commands to read the

current encoder count, reset the buffer, and reread the count:

>> readCount(enc)
>> resetCount(enc)
>> readCount(enc)

The chosen encoder hardware provides a resolution of 12 counts per motor shaft revolution

(see technical specifications at this link). Thus, you can convert the motor shaft's encoder

count to the physical angle of the motor shaft in degrees as follows:

>> shaftAngle = (readCount(enc)/12)*360

This DC motor has a gear ratio of 100:1 (see technical specifications at this link) between the

motor shaft and the output shaft that attaches to the device you're driving, such as a wheel.

Use the following commands to get the angle of the output shaft in degrees, and then

normalize it to the range of 0 to 360 degrees:

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle,360)

Now let's displace the output shaft angle using the DC motor rather than manual rotation:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readCount(enc)
>> readCount(enc)
>> readCount(enc)
>> stop(dcm)

Now, you're able to determine the angular position of the motor shaft and output shaft. To

get the angular speed in rpm (revolutions per minute), you can use the method readSpeed

as follows:

>> dcm.Speed = 0.5;
>> start(dcm)
>> readSpeed(enc)
>> stop(dcm)

Now, let's determine the speed of the output shaft in rpm and then in degrees per second.

Use the following command:

>> dcm.Speed = 0.5;
>> start(dcm)
>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60*360

Troubleshooting

If you don’t have the expected behavior after you have run the first sketch:

If you don’t have the expected behavior after you have run the second sketch:

3.6 Characterizing a DC Gear Motor in

MATLAB
In this section, you will learn:

Create test Data

Let's begin writing our motor characterisation program. Open the existing code in your live

script, and type the following lines to define your test PWM command values:

%% 1. Create test data 

maxPWM = 1.00;                          % Maximum duty cycle
incrPWM = 0.05;                         % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM);   % Column vector of duty cycles from -1 to 
1

As seen in chapter 2, you can break down your program into logical sections by clicking on

Section Break or by typing "%%" at the beginning of each section. You can also add

comments to individual lines of code by using the "%" character.

Run your live script and examine your Workspace. You have created a vector containing a

series of numbers ranging from -1 to 1 with 0.05 increments. That will be used to generate

the PWM signal we will apply to the DC motor to characterise its behavior.

Create and Initialize Device Objects

Now let's add some code to create and/or initialize the four device objects that we will need

for this experiment: Arduino ( a ), the DC motor ( dcm ), the Carrier ( carrier ), and the

encoder ( enc ). Add the following lines of code to your live script:

%% 2. Create and initialize device objects 

clear a dcm carrier enc              % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');         % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);      % Connect the encoder of 'M1' at the encoder 
port 1 on the Arduino Nano Motor Carrier board

Rerun your live script to ensure correct behavior; you can check the results by looking at the

Workspace. If everything went as expected, your live script now includes all the objects

needed to perform the test.

Automate Motor Speed Measurement for each PWM

Command

Previously, you prepared the code by creating the objects that connect to Arduino, the Motor

Carrier, and the encoder. Next, we will see how to automate multiple measurements.

Now you will add a new section of code that starts the motor with a PWM value, reads the

motor speed, and then stops the motor. Add the following section to your live script to

measure the speed for the first PWM value:

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                             
gearRatio = 100;                            % As per the motor spec sheet, gear 
ratio equals 100:1
start(dcm)                                  % turn on motor
dcm.Speed = PWMcmdRaw(1);
pause(1)                                    % wait for steady state
speedRaw(1) = readSpeed(enc)/gearRatio;     % read motor speed in rpm of the 
output shaft
stop(dcm);                                  % turn off motor
dcm.Speed = 0;                                                

Try running this section with different index values of PWMcmdRaw  to obtain different

speedRaw  values. In the example code, the index is 1; we take the first index of

PWMcmdRaw, send it to the motor, measure the speed and store it the first element of

speedRaw. Examine the results in the MATLAB Workspace.

You now have a live script that you can use to get speed measurements for any PWM

command value. Let's generalize this section of the script so that it measures the speed for

all the values in the vector PWMcmdRaw . You can repeat parts of your code using a For-Loop.

A for-loop is a block of code that executes a known number of times, called iterations. To

create a for-loop, you need a header (which defines the number of iterations), and the end

keyword (which defines the end of the repeating code). A for-loop checks the value of an

index variable to decide whether the condition to leave the loop has been met. The index

indicates the current iteration. Here is a simple example of a for-loop:

for idx = 1:10
y(idx) = (2 + idx) / idx;
end

This for-loop executes for 10 iterations, and the index variable idx  takes a new scalar value

from 1 to 10 during each iteration.

In our case, you want to iterate through all the elements of PWMcmdRaw , and take a new

speed measurement during each iteration. The result should be a vector that is the same size

as PWMcmdRaw . Add a for-loop header and an end keyword to your code, as shown below.

Remember to update the indices in PWMcmdRaw  and speedRaw  to the index variable, ii .

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;                              
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1
start(dcm)                                      % turn on motor

for ii = 1:length(PWMcmdRaw)
    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % wait for steady state
    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

stop(dcm)                                       % turn off motor
dcm.Speed = 0;

Execute the section and ensure that all possible PWM values in the PWMcmdRaw  vector are

tested. At this point, the Live Editor window should be showing a warning on the assignment

to speedRaw(ii) . Hover over the speedRaw variable in the Live Editor window to see

details about the warning:

The warning appears because the script is assigning values to increasing indices of

speedRaw , and as a result speedRaw  needs to increase its size on every iteration to

accommodate the new element. In some cases, this can lead to performance issues because

the variable's memory may need to be reallocated many times. You can solve this problem if

you know how large the array is going to get by defining the vector in advance.

Before assigning values to an array inside a for-loop, you should allocate memory for the

array, so that it will not get resized inside the loop. The zeros  function is often used for this

purpose. Add the following line of code before the for-loop to allocate space for speedRaw

before populating it with values:

speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

Final code snippet for automating the motor speed measurements:

%% 3. Measure raw motor speed for each PWM command

speedRaw = zeros(size(PWMcmdRaw));              % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                      % Turn on motor

Check that the Arduino Nano Motor Carrier is ON

Check that the motors are connected in the motor connector ports

Check the back part of the motors, be sure that the black disk is not touching the PCB

components

Try to move the motor axis by hand

Check that the Arduino Nano Motor Carrier is ON

Check the encoder connections

Be sure that the battery is charged

Update the Arduino Nano Motor Carrier firmware uploading the example: File >

Examples > ArduinoMotorCarrier > Flasher.

How to automate processes in MATLAB using a script that measures the motor speed,

To issue different PWM commands to characterize the response of the 100:1 DC

gearhead motor,

How to use code sections to partition scripts into smaller parts,

How to use for-loops to repeat blocks of code,

How to use text labels and comments to organise and document MATLAB scripts,

How to create and call a MATLAB function.

Visualising Measured Speed VS. PWM Duty Cycle

Now you have some real speed measurements in your Workspace. Let's visualize them

against their corresponding PWM command values using the plot  command we learned

about earlier. Add the following section to your live script to plot and annotate the raw data:

%% 4. Graph raw data

plot(PWMcmdRaw,speedRaw)      % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')

Execute the section and examine the figure in the output column of the Live Editor:

Notice some interesting features of the speed-PWM relationship that you can deduct from

studying the graph. There is a "dead zone" around PWM=0, where there is zero rotational

speed for non-zero PWM commands. Furthermore, there may be some non-monotonic

portions of the curve, where the measured speed does not increase with increasing PWM

command. This typically happens around PWM = +/-1, but could also result from

experimental error.

Post-Processing Speed Measurements

Collecting this data will be relevant later when you want to model how a more complex

machine that uses several motors behaves. Later you will create a motor control system in

Simulink, in which a user will request a motor speed in rpm (revolutions per minute). The

system will calculate the required PWM command to run the motor at that speed and send it

to the Arduino board. To perform this operation correctly, the controller needs a one-to-one

mapping between motor speeds and PWM commands. This means that there can only be

one PWM command per speed, so you must remove repeated values and nonincreasing

values from the data. First you must identify which values of speedRaw  are not in increasing

order. Examine speedRaw in the Command Window:

  >> speedRaw

Locate the multiple zeros in the speed measurements and look for nonincreasing values.

It is not easy to see where the nonincreasing values are, so let's make a first-order difference.

Enter the following command:

>> diff(speedRaw)

This will output another vector showing the differences between pairs of values in the array.

To remove non-increasing values in speedRaw , you need to know the indices where

diff(speedRaw)  is non-positive. To do this, you can use relational operators to create a

logical condition. Enter the following logical expressions, and interpret the result:

>> pi > 3
>> pi >= 3
>> pi == 3
>> pi < 3
>> x = 1:5
>> x == 3
>> x < 3
>> y = x < 3

For the first half of the previous commands (all the ones related to pi), the operations will

produce a different result based on the level of truth of the statement.

For the second set of operations (the ones related to the variables x  and y  ), the results are

different, since x  is an array containing the numbers 1 to 5. Examine x  and y  in your

Workspace. The numeric vector x  is the same size as the logical index vector y . You can

use a logical index expression or variable to index into a variable of the same size. Try the

following commands:

>> x(y)
>> x(~y)
>> z = rand(1,5)
>> z(y)

Now let's get the logical indices and values of speedRaw  where it is strictly increasing. Enter

the following commands:

>> idx = diff(speedRaw) > 0
>> speedMono = speedRaw(idx);

How does the size of speedMono  compare to that of speedRaw ? They are different; think

about why this is the case. Note, to get help with built-in MATLAB functions like diff ,

rand , and tic , use the doc command to access the documentation. For example:

>> doc diff

The documentation for each function will show you the various ways the function can be

called, and examples for each syntax.

Now you have made a monotonic version of the speed measurements, but there are some

problems. First, how do you now align the PWM command values to the new speed vector if

they are different sizes? You can use the same logical index to isolate the corresponding PWM

values. Use the following command to filter the PWM values, and plot both the raw and

filtered values:

>> PWMcmdMono = PWMcmdRaw(idx);
>> plot(PWMcmdRaw,speedRaw,PWMcmdMono,speedMono)

To illustrate a second issue that arises when post-processing the information obtained from

the motor, enter the following commands:

>> speedMono == 0

 >> PWMcmdMono(speedMono == 0)

Due to the way we filtered out the non-monotonic points, a speed of zero is to be driven by a

non-zero PWM. Although commanding a small enough PWM value will result in zero speed

due to friction, it would waste power, especially if the system commands zero speed for a

long time. Therefore, you should change that value of PWMcmdMono  to 0 , which will have

the same result. Enter the following command:

>> PWMcmdMono(speedMono == 0) = 0;

Let's incorporate the post-processing into the live script. Add a new section before the

section labeled Graph raw data, and type the following code:

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0);             % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values
PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed
save motorResponse PWMcmdMono speedMono % save post-processed measurements

Now update the Graph raw data section to include both the raw data and post-processed

data. Add the following lines of code as follows:

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw,speedRaw)                            % raw speed measurements
hold on
plot(PWMcmdMono,speedMono)                          % non-monotonic measurements 
filtered out
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data','Location','northwest')

Finally, delete all device objects to release the Arduino Nano 33 IoT board to be used in other

processes. Add the following section at the end of your live script:

%% 6. Delete device objects

clear a dcm carrier enc

Saving and Rerunning Scripts

You now have a fully functional live script that automatically performs a series of

measurements, post-processes those measurements, saves the experimental data to disk,

and plots the results. You may want to repeat this analysis multiple times, for the same

motor or perhaps other DC motors. You can save your live script as a .mlx  file so that you

can run it again later or share it with other MATLAB users. Save your live script as

myMotorCharacterization.mlx . An .mlx  file contains not only your code and text

annotations, but also any numeric or graphical results that were displayed in the output

column. Thus, your live script is an active report of your analysis and results. Recall that you

can run your live script in its entirety using the Run button in the Live Editor window:

You can also run the live script directly in the Command Window using its name as the

command. Try running your live script:

>> myMotorCharacterization

Creating MATLAB Functions

Look at your Workspace. Which of the existing variables are useful to you? Which variables

are intermediate values from your live script that you no longer need?

You can compartmentalize parts of your MATLAB program into functions, so that the

intermediate calculations are hidden and you only need to manage inputs and outputs.

Looking at your live script, the first two sections are specific to this DC motor, encoder, and

test case ( PWMcmdRaw ). The following three sections (measure raw motor speed for each

PWM command, post-process and save data, and graph raw and post-processed data) can be

generalized for any DC motor, encoder, and test case. Let's create a MATLAB function for that

code. Start in the Live Editor window by clicking New > Live Function.

Next, you need to determine what the inputs and outputs to your function are. Section 3 of

your live script requires the test vector PWMcmdRaw , the DC motor object dcm , and the

encoder object enc .

The next line of code is an example of a possible function header. Place the inputs in

parentheses ( ( ) ) with the three variables listed above:

function z = Untitled(PWMcmdRaw,dcm,enc)

Now consider what variables you want to access from the motor characterization algorithm.

The only meaningful variables created in these sections are PWMcmdMono  and speedMono .

In the function header, list these two variables as outputs in square brackets ( [ ] ).

function [PWMcmdMono,speedMono] = Untitled(PWMcmdRaw,dcm,enc)

Finally, let's name the function so that we know how to call it in MATLAB code. Replace the

function name with myMotorFunction:

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

Now let's fill in the algorithm. Cut and paste sections 3, 4, and 5 from your live script to your

live function, between the function header and the end keyword.

4. Post-process and save data
idx = diff(speedRaw) > 0;               % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values

PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed

save motorResponse,'PWMcmdMono','speedMono' % save post-processed measurements

5. Graph raw and post-processed data
plot(PWMcmdRaw,speedRaw)   % raw speed measurements
hold on
plot(PWMcmdMono,speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data')

Save the file as myMotorFunction.mlx. Now you have a working MATLAB function that you

can call from any MATLAB code environment. Let's try calling it from your live script. In the

empty section of your live script, enter the call to your function:

1. Create test data
maxPWM = 1.00;                         % maximum duty cycle
incrPWM = 0.05;                        % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc                % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');           % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);        % Connect the encoder of 'M1' at the 
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono,speedMono] = characterizeMotorFcn(PWMcmdRaw,dcm,enc);

6. Delete device objects
clear a carrier dcm enc

Now run your live script and ensure it still works as before.

To further understand the benefits of using MATLAB functions, clear your Workspace in the

Command Window, and run your live script again.

>> clear

>> myMotorCharacterization

Examine your Workspace. The list of variables should be more concise now. There is one

more thing you may want to generalize in this function, and that is the name of the MAT-File

that we use in the save command. As of now, the analysis data gets saved to the same MAT-

File, motorResponse.mat , every time you call the function. This is not very useful if you

want to characterize multiple DC motors. Let's add a new input to the function for the file

name. In the live function, add the new input as shown below:

function[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,filename)

Now let's use the new input in the save command. Rewrite the save command as follows:

save(filename,'PWMcmdMono','speedMono')% save post-processed measurements

Finally, we need to modify the function call, since the function header has changed. In the live

script, change the function call as follows:

[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,'motorResponse');

Now you can save the analysis data to any MAT-file you want each time you call

myMotorFunction . Try calling your live script once more:

>> myMotorCharacterization

3.7 Designing a Motor Control System
In this section, you will learn:

CONTROL SYSTEM FLOW CHART

In this diagram, the blocks represent some functionality or process and the arrows represent

data flow. The directionality of the arrows indicate which process generates the data and

where the data is used. Simulink enables you to create your algorithm as a block diagram and

execute it over an interval of time.

Create the Blocks

Add the Sin block

Let's add some blocks to the model canvas. Open the Simulink Library Browser by clicking

the Library Browser button in the toolstrip. You will use a sine wave to simulate the speed

input.

Locate the Sine Wave block and drag it from the Simulink Library Browser window to the

Simulink Editor window.

Add a Lookup Table and Gain

Next you need to convert the user's speed signal coming from the Sine Wave block into a

PWM signal between -1 and 1. To do this, use a lookup table, which uses interpolation

among known data points to determine an output value for an arbitrary input value. Locate

the 1-D Lookup Table block in Simulink > Lookup Tables and drag it into the Simulink

Editor window.

The Lookup Table will output PWM command values between -1 and 1. Ultimately, you will

communicate the magnitude of the duty cycle to the DC motor hardware using integers that

range from -100 to 100 for the M1 M2 DC Motors block or -255 to 255 for the M3 M4 DC

Motors block. To prepare for this scaling, you need a Gain block. A Gain block multiplies a

Simulink signal by a constant value. Add a Gain block from Simulink > Math Operations:

Add a Sink block

Now let's add a block to visualize the output of the lookup table. Examine the Simulink >

Sinks library.

Connect the blocks

Once you've added the blocks to the simulink window, arrange them linearly as shown in the

image below.

Now you need to connect the blocks using signals. Left click on the outport and drag it to the

import and when the signal line turns solid, you have connected the signal and you can stop

the click and drag.

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft

end

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                 % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                       % Turn on motor

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

Design a motor control system that takes the users desired speed as input

How to determine the necessary PWM command to achieve that speed

Use simulink to model and simulate this system

Running the simulink model directly on the Arduino Nano 33 IoT

Visualising Measured Speed VS. PWM Duty Cycle

Now you have some real speed measurements in your Workspace. Let's visualize them

against their corresponding PWM command values using the plot  command we learned

about earlier. Add the following section to your live script to plot and annotate the raw data:

%% 4. Graph raw data

plot(PWMcmdRaw,speedRaw)      % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')

Execute the section and examine the figure in the output column of the Live Editor:

Notice some interesting features of the speed-PWM relationship that you can deduct from

studying the graph. There is a "dead zone" around PWM=0, where there is zero rotational

speed for non-zero PWM commands. Furthermore, there may be some non-monotonic

portions of the curve, where the measured speed does not increase with increasing PWM

command. This typically happens around PWM = +/-1, but could also result from

experimental error.

Post-Processing Speed Measurements

Collecting this data will be relevant later when you want to model how a more complex

machine that uses several motors behaves. Later you will create a motor control system in

Simulink, in which a user will request a motor speed in rpm (revolutions per minute). The

system will calculate the required PWM command to run the motor at that speed and send it

to the Arduino board. To perform this operation correctly, the controller needs a one-to-one

mapping between motor speeds and PWM commands. This means that there can only be

one PWM command per speed, so you must remove repeated values and nonincreasing

values from the data. First you must identify which values of speedRaw  are not in increasing

order. Examine speedRaw in the Command Window:

  >> speedRaw

Locate the multiple zeros in the speed measurements and look for nonincreasing values.

It is not easy to see where the nonincreasing values are, so let's make a first-order difference.

Enter the following command:

>> diff(speedRaw)

This will output another vector showing the differences between pairs of values in the array.

To remove non-increasing values in speedRaw , you need to know the indices where

diff(speedRaw)  is non-positive. To do this, you can use relational operators to create a

logical condition. Enter the following logical expressions, and interpret the result:

>> pi > 3
>> pi >= 3
>> pi == 3
>> pi < 3
>> x = 1:5
>> x == 3
>> x < 3
>> y = x < 3

For the first half of the previous commands (all the ones related to pi), the operations will

produce a different result based on the level of truth of the statement.

For the second set of operations (the ones related to the variables x  and y  ), the results are

different, since x  is an array containing the numbers 1 to 5. Examine x  and y  in your

Workspace. The numeric vector x  is the same size as the logical index vector y . You can

use a logical index expression or variable to index into a variable of the same size. Try the

following commands:

>> x(y)
>> x(~y)
>> z = rand(1,5)
>> z(y)

Now let's get the logical indices and values of speedRaw  where it is strictly increasing. Enter

the following commands:

>> idx = diff(speedRaw) > 0
>> speedMono = speedRaw(idx);

How does the size of speedMono  compare to that of speedRaw ? They are different; think

about why this is the case. Note, to get help with built-in MATLAB functions like diff ,

rand , and tic , use the doc command to access the documentation. For example:

>> doc diff

The documentation for each function will show you the various ways the function can be

called, and examples for each syntax.

Now you have made a monotonic version of the speed measurements, but there are some

problems. First, how do you now align the PWM command values to the new speed vector if

they are different sizes? You can use the same logical index to isolate the corresponding PWM

values. Use the following command to filter the PWM values, and plot both the raw and

filtered values:

>> PWMcmdMono = PWMcmdRaw(idx);
>> plot(PWMcmdRaw,speedRaw,PWMcmdMono,speedMono)

To illustrate a second issue that arises when post-processing the information obtained from

the motor, enter the following commands:

>> speedMono == 0

 >> PWMcmdMono(speedMono == 0)

Due to the way we filtered out the non-monotonic points, a speed of zero is to be driven by a

non-zero PWM. Although commanding a small enough PWM value will result in zero speed

due to friction, it would waste power, especially if the system commands zero speed for a

long time. Therefore, you should change that value of PWMcmdMono  to 0 , which will have

the same result. Enter the following command:

>> PWMcmdMono(speedMono == 0) = 0;

Let's incorporate the post-processing into the live script. Add a new section before the

section labeled Graph raw data, and type the following code:

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0);             % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values
PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed
save motorResponse PWMcmdMono speedMono % save post-processed measurements

Now update the Graph raw data section to include both the raw data and post-processed

data. Add the following lines of code as follows:

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw,speedRaw)                            % raw speed measurements
hold on
plot(PWMcmdMono,speedMono)                          % non-monotonic measurements 
filtered out
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data','Location','northwest')

Finally, delete all device objects to release the Arduino Nano 33 IoT board to be used in other

processes. Add the following section at the end of your live script:

%% 6. Delete device objects

clear a dcm carrier enc

Saving and Rerunning Scripts

You now have a fully functional live script that automatically performs a series of

measurements, post-processes those measurements, saves the experimental data to disk,

and plots the results. You may want to repeat this analysis multiple times, for the same

motor or perhaps other DC motors. You can save your live script as a .mlx  file so that you

can run it again later or share it with other MATLAB users. Save your live script as

myMotorCharacterization.mlx . An .mlx  file contains not only your code and text

annotations, but also any numeric or graphical results that were displayed in the output

column. Thus, your live script is an active report of your analysis and results. Recall that you

can run your live script in its entirety using the Run button in the Live Editor window:

You can also run the live script directly in the Command Window using its name as the

command. Try running your live script:

>> myMotorCharacterization

Creating MATLAB Functions

Look at your Workspace. Which of the existing variables are useful to you? Which variables

are intermediate values from your live script that you no longer need?

You can compartmentalize parts of your MATLAB program into functions, so that the

intermediate calculations are hidden and you only need to manage inputs and outputs.

Looking at your live script, the first two sections are specific to this DC motor, encoder, and

test case ( PWMcmdRaw ). The following three sections (measure raw motor speed for each

PWM command, post-process and save data, and graph raw and post-processed data) can be

generalized for any DC motor, encoder, and test case. Let's create a MATLAB function for that

code. Start in the Live Editor window by clicking New > Live Function.

Next, you need to determine what the inputs and outputs to your function are. Section 3 of

your live script requires the test vector PWMcmdRaw , the DC motor object dcm , and the

encoder object enc .

The next line of code is an example of a possible function header. Place the inputs in

parentheses ( ( ) ) with the three variables listed above:

function z = Untitled(PWMcmdRaw,dcm,enc)

Now consider what variables you want to access from the motor characterization algorithm.

The only meaningful variables created in these sections are PWMcmdMono  and speedMono .

In the function header, list these two variables as outputs in square brackets ( [ ] ).

function [PWMcmdMono,speedMono] = Untitled(PWMcmdRaw,dcm,enc)

Finally, let's name the function so that we know how to call it in MATLAB code. Replace the

function name with myMotorFunction:

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

Now let's fill in the algorithm. Cut and paste sections 3, 4, and 5 from your live script to your

live function, between the function header and the end keyword.

4. Post-process and save data
idx = diff(speedRaw) > 0;               % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values

PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed

save motorResponse,'PWMcmdMono','speedMono' % save post-processed measurements

5. Graph raw and post-processed data
plot(PWMcmdRaw,speedRaw)   % raw speed measurements
hold on
plot(PWMcmdMono,speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data')

Save the file as myMotorFunction.mlx. Now you have a working MATLAB function that you

can call from any MATLAB code environment. Let's try calling it from your live script. In the

empty section of your live script, enter the call to your function:

1. Create test data
maxPWM = 1.00;                         % maximum duty cycle
incrPWM = 0.05;                        % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc                % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');           % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);        % Connect the encoder of 'M1' at the 
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono,speedMono] = characterizeMotorFcn(PWMcmdRaw,dcm,enc);

6. Delete device objects
clear a carrier dcm enc

Now run your live script and ensure it still works as before.

To further understand the benefits of using MATLAB functions, clear your Workspace in the

Command Window, and run your live script again.

>> clear

>> myMotorCharacterization

Examine your Workspace. The list of variables should be more concise now. There is one

more thing you may want to generalize in this function, and that is the name of the MAT-File

that we use in the save command. As of now, the analysis data gets saved to the same MAT-

File, motorResponse.mat , every time you call the function. This is not very useful if you

want to characterize multiple DC motors. Let's add a new input to the function for the file

name. In the live function, add the new input as shown below:

function[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,filename)

Now let's use the new input in the save command. Rewrite the save command as follows:

save(filename,'PWMcmdMono','speedMono')% save post-processed measurements

Finally, we need to modify the function call, since the function header has changed. In the live

script, change the function call as follows:

[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,'motorResponse');

Now you can save the analysis data to any MAT-file you want each time you call

myMotorFunction . Try calling your live script once more:

>> myMotorCharacterization

3.7 Designing a Motor Control System
In this section, you will learn:

CONTROL SYSTEM FLOW CHART

In this diagram, the blocks represent some functionality or process and the arrows represent

data flow. The directionality of the arrows indicate which process generates the data and

where the data is used. Simulink enables you to create your algorithm as a block diagram and

execute it over an interval of time.

Create the Blocks

Add the Sin block

Let's add some blocks to the model canvas. Open the Simulink Library Browser by clicking

the Library Browser button in the toolstrip. You will use a sine wave to simulate the speed

input.

Locate the Sine Wave block and drag it from the Simulink Library Browser window to the

Simulink Editor window.

Add a Lookup Table and Gain

Next you need to convert the user's speed signal coming from the Sine Wave block into a

PWM signal between -1 and 1. To do this, use a lookup table, which uses interpolation

among known data points to determine an output value for an arbitrary input value. Locate

the 1-D Lookup Table block in Simulink > Lookup Tables and drag it into the Simulink

Editor window.

The Lookup Table will output PWM command values between -1 and 1. Ultimately, you will

communicate the magnitude of the duty cycle to the DC motor hardware using integers that

range from -100 to 100 for the M1 M2 DC Motors block or -255 to 255 for the M3 M4 DC

Motors block. To prepare for this scaling, you need a Gain block. A Gain block multiplies a

Simulink signal by a constant value. Add a Gain block from Simulink > Math Operations:

Add a Sink block

Now let's add a block to visualize the output of the lookup table. Examine the Simulink >

Sinks library.

Connect the blocks

Once you've added the blocks to the simulink window, arrange them linearly as shown in the

image below.

Now you need to connect the blocks using signals. Left click on the outport and drag it to the

import and when the signal line turns solid, you have connected the signal and you can stop

the click and drag.

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft

end

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                 % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                       % Turn on motor

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end
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Visualising Measured Speed VS. PWM Duty Cycle

Now you have some real speed measurements in your Workspace. Let's visualize them

against their corresponding PWM command values using the plot  command we learned

about earlier. Add the following section to your live script to plot and annotate the raw data:

%% 4. Graph raw data

plot(PWMcmdRaw,speedRaw)      % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')

Execute the section and examine the figure in the output column of the Live Editor:

Notice some interesting features of the speed-PWM relationship that you can deduct from

studying the graph. There is a "dead zone" around PWM=0, where there is zero rotational

speed for non-zero PWM commands. Furthermore, there may be some non-monotonic

portions of the curve, where the measured speed does not increase with increasing PWM

command. This typically happens around PWM = +/-1, but could also result from

experimental error.

Post-Processing Speed Measurements

Collecting this data will be relevant later when you want to model how a more complex

machine that uses several motors behaves. Later you will create a motor control system in

Simulink, in which a user will request a motor speed in rpm (revolutions per minute). The

system will calculate the required PWM command to run the motor at that speed and send it

to the Arduino board. To perform this operation correctly, the controller needs a one-to-one

mapping between motor speeds and PWM commands. This means that there can only be

one PWM command per speed, so you must remove repeated values and nonincreasing

values from the data. First you must identify which values of speedRaw  are not in increasing

order. Examine speedRaw in the Command Window:

  >> speedRaw

Locate the multiple zeros in the speed measurements and look for nonincreasing values.

It is not easy to see where the nonincreasing values are, so let's make a first-order difference.

Enter the following command:

>> diff(speedRaw)

This will output another vector showing the differences between pairs of values in the array.

To remove non-increasing values in speedRaw , you need to know the indices where

diff(speedRaw)  is non-positive. To do this, you can use relational operators to create a

logical condition. Enter the following logical expressions, and interpret the result:

>> pi > 3
>> pi >= 3
>> pi == 3
>> pi < 3
>> x = 1:5
>> x == 3
>> x < 3
>> y = x < 3

For the first half of the previous commands (all the ones related to pi), the operations will

produce a different result based on the level of truth of the statement.

For the second set of operations (the ones related to the variables x  and y  ), the results are

different, since x  is an array containing the numbers 1 to 5. Examine x  and y  in your

Workspace. The numeric vector x  is the same size as the logical index vector y . You can

use a logical index expression or variable to index into a variable of the same size. Try the

following commands:

>> x(y)
>> x(~y)
>> z = rand(1,5)
>> z(y)

Now let's get the logical indices and values of speedRaw  where it is strictly increasing. Enter

the following commands:

>> idx = diff(speedRaw) > 0
>> speedMono = speedRaw(idx);

How does the size of speedMono  compare to that of speedRaw ? They are different; think

about why this is the case. Note, to get help with built-in MATLAB functions like diff ,

rand , and tic , use the doc command to access the documentation. For example:

>> doc diff

The documentation for each function will show you the various ways the function can be

called, and examples for each syntax.

Now you have made a monotonic version of the speed measurements, but there are some

problems. First, how do you now align the PWM command values to the new speed vector if

they are different sizes? You can use the same logical index to isolate the corresponding PWM

values. Use the following command to filter the PWM values, and plot both the raw and

filtered values:

>> PWMcmdMono = PWMcmdRaw(idx);
>> plot(PWMcmdRaw,speedRaw,PWMcmdMono,speedMono)

To illustrate a second issue that arises when post-processing the information obtained from

the motor, enter the following commands:

>> speedMono == 0

 >> PWMcmdMono(speedMono == 0)

Due to the way we filtered out the non-monotonic points, a speed of zero is to be driven by a

non-zero PWM. Although commanding a small enough PWM value will result in zero speed

due to friction, it would waste power, especially if the system commands zero speed for a

long time. Therefore, you should change that value of PWMcmdMono  to 0 , which will have

the same result. Enter the following command:

>> PWMcmdMono(speedMono == 0) = 0;

Let's incorporate the post-processing into the live script. Add a new section before the

section labeled Graph raw data, and type the following code:

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0);             % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values
PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed
save motorResponse PWMcmdMono speedMono % save post-processed measurements

Now update the Graph raw data section to include both the raw data and post-processed

data. Add the following lines of code as follows:

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw,speedRaw)                            % raw speed measurements
hold on
plot(PWMcmdMono,speedMono)                          % non-monotonic measurements 
filtered out
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data','Location','northwest')

Finally, delete all device objects to release the Arduino Nano 33 IoT board to be used in other

processes. Add the following section at the end of your live script:

%% 6. Delete device objects

clear a dcm carrier enc

Saving and Rerunning Scripts

You now have a fully functional live script that automatically performs a series of

measurements, post-processes those measurements, saves the experimental data to disk,

and plots the results. You may want to repeat this analysis multiple times, for the same

motor or perhaps other DC motors. You can save your live script as a .mlx  file so that you

can run it again later or share it with other MATLAB users. Save your live script as

myMotorCharacterization.mlx . An .mlx  file contains not only your code and text

annotations, but also any numeric or graphical results that were displayed in the output

column. Thus, your live script is an active report of your analysis and results. Recall that you

can run your live script in its entirety using the Run button in the Live Editor window:

You can also run the live script directly in the Command Window using its name as the

command. Try running your live script:

>> myMotorCharacterization

Creating MATLAB Functions

Look at your Workspace. Which of the existing variables are useful to you? Which variables

are intermediate values from your live script that you no longer need?

You can compartmentalize parts of your MATLAB program into functions, so that the

intermediate calculations are hidden and you only need to manage inputs and outputs.

Looking at your live script, the first two sections are specific to this DC motor, encoder, and

test case ( PWMcmdRaw ). The following three sections (measure raw motor speed for each

PWM command, post-process and save data, and graph raw and post-processed data) can be

generalized for any DC motor, encoder, and test case. Let's create a MATLAB function for that

code. Start in the Live Editor window by clicking New > Live Function.

Next, you need to determine what the inputs and outputs to your function are. Section 3 of

your live script requires the test vector PWMcmdRaw , the DC motor object dcm , and the

encoder object enc .

The next line of code is an example of a possible function header. Place the inputs in

parentheses ( ( ) ) with the three variables listed above:

function z = Untitled(PWMcmdRaw,dcm,enc)

Now consider what variables you want to access from the motor characterization algorithm.

The only meaningful variables created in these sections are PWMcmdMono  and speedMono .

In the function header, list these two variables as outputs in square brackets ( [ ] ).

function [PWMcmdMono,speedMono] = Untitled(PWMcmdRaw,dcm,enc)

Finally, let's name the function so that we know how to call it in MATLAB code. Replace the

function name with myMotorFunction:

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

Now let's fill in the algorithm. Cut and paste sections 3, 4, and 5 from your live script to your

live function, between the function header and the end keyword.

4. Post-process and save data
idx = diff(speedRaw) > 0;               % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values

PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed

save motorResponse,'PWMcmdMono','speedMono' % save post-processed measurements

5. Graph raw and post-processed data
plot(PWMcmdRaw,speedRaw)   % raw speed measurements
hold on
plot(PWMcmdMono,speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data')

Save the file as myMotorFunction.mlx. Now you have a working MATLAB function that you

can call from any MATLAB code environment. Let's try calling it from your live script. In the

empty section of your live script, enter the call to your function:

1. Create test data
maxPWM = 1.00;                         % maximum duty cycle
incrPWM = 0.05;                        % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc                % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');           % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);        % Connect the encoder of 'M1' at the 
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono,speedMono] = characterizeMotorFcn(PWMcmdRaw,dcm,enc);

6. Delete device objects
clear a carrier dcm enc

Now run your live script and ensure it still works as before.

To further understand the benefits of using MATLAB functions, clear your Workspace in the

Command Window, and run your live script again.

>> clear

>> myMotorCharacterization

Examine your Workspace. The list of variables should be more concise now. There is one

more thing you may want to generalize in this function, and that is the name of the MAT-File

that we use in the save command. As of now, the analysis data gets saved to the same MAT-

File, motorResponse.mat , every time you call the function. This is not very useful if you

want to characterize multiple DC motors. Let's add a new input to the function for the file

name. In the live function, add the new input as shown below:

function[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,filename)

Now let's use the new input in the save command. Rewrite the save command as follows:

save(filename,'PWMcmdMono','speedMono')% save post-processed measurements

Finally, we need to modify the function call, since the function header has changed. In the live

script, change the function call as follows:

[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,'motorResponse');

Now you can save the analysis data to any MAT-file you want each time you call

myMotorFunction . Try calling your live script once more:

>> myMotorCharacterization

3.7 Designing a Motor Control System
In this section, you will learn:

CONTROL SYSTEM FLOW CHART

In this diagram, the blocks represent some functionality or process and the arrows represent

data flow. The directionality of the arrows indicate which process generates the data and

where the data is used. Simulink enables you to create your algorithm as a block diagram and

execute it over an interval of time.

Create the Blocks

Add the Sin block

Let's add some blocks to the model canvas. Open the Simulink Library Browser by clicking

the Library Browser button in the toolstrip. You will use a sine wave to simulate the speed

input.

Locate the Sine Wave block and drag it from the Simulink Library Browser window to the

Simulink Editor window.

Add a Lookup Table and Gain

Next you need to convert the user's speed signal coming from the Sine Wave block into a

PWM signal between -1 and 1. To do this, use a lookup table, which uses interpolation

among known data points to determine an output value for an arbitrary input value. Locate

the 1-D Lookup Table block in Simulink > Lookup Tables and drag it into the Simulink

Editor window.

The Lookup Table will output PWM command values between -1 and 1. Ultimately, you will

communicate the magnitude of the duty cycle to the DC motor hardware using integers that

range from -100 to 100 for the M1 M2 DC Motors block or -255 to 255 for the M3 M4 DC

Motors block. To prepare for this scaling, you need a Gain block. A Gain block multiplies a

Simulink signal by a constant value. Add a Gain block from Simulink > Math Operations:

Add a Sink block

Now let's add a block to visualize the output of the lookup table. Examine the Simulink >

Sinks library.

Connect the blocks

Once you've added the blocks to the simulink window, arrange them linearly as shown in the

image below.

Now you need to connect the blocks using signals. Left click on the outport and drag it to the

import and when the signal line turns solid, you have connected the signal and you can stop

the click and drag.

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft

end

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                 % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                       % Turn on motor

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end
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Visualising Measured Speed VS. PWM Duty Cycle

Now you have some real speed measurements in your Workspace. Let's visualize them

against their corresponding PWM command values using the plot  command we learned

about earlier. Add the following section to your live script to plot and annotate the raw data:

%% 4. Graph raw data

plot(PWMcmdRaw,speedRaw)      % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')

Execute the section and examine the figure in the output column of the Live Editor:

Notice some interesting features of the speed-PWM relationship that you can deduct from

studying the graph. There is a "dead zone" around PWM=0, where there is zero rotational

speed for non-zero PWM commands. Furthermore, there may be some non-monotonic

portions of the curve, where the measured speed does not increase with increasing PWM

command. This typically happens around PWM = +/-1, but could also result from

experimental error.

Post-Processing Speed Measurements

Collecting this data will be relevant later when you want to model how a more complex

machine that uses several motors behaves. Later you will create a motor control system in

Simulink, in which a user will request a motor speed in rpm (revolutions per minute). The

system will calculate the required PWM command to run the motor at that speed and send it

to the Arduino board. To perform this operation correctly, the controller needs a one-to-one

mapping between motor speeds and PWM commands. This means that there can only be

one PWM command per speed, so you must remove repeated values and nonincreasing

values from the data. First you must identify which values of speedRaw  are not in increasing

order. Examine speedRaw in the Command Window:

  >> speedRaw

Locate the multiple zeros in the speed measurements and look for nonincreasing values.

It is not easy to see where the nonincreasing values are, so let's make a first-order difference.

Enter the following command:

>> diff(speedRaw)

This will output another vector showing the differences between pairs of values in the array.

To remove non-increasing values in speedRaw , you need to know the indices where

diff(speedRaw)  is non-positive. To do this, you can use relational operators to create a

logical condition. Enter the following logical expressions, and interpret the result:

>> pi > 3
>> pi >= 3
>> pi == 3
>> pi < 3
>> x = 1:5
>> x == 3
>> x < 3
>> y = x < 3

For the first half of the previous commands (all the ones related to pi), the operations will

produce a different result based on the level of truth of the statement.

For the second set of operations (the ones related to the variables x  and y  ), the results are

different, since x  is an array containing the numbers 1 to 5. Examine x  and y  in your

Workspace. The numeric vector x  is the same size as the logical index vector y . You can

use a logical index expression or variable to index into a variable of the same size. Try the

following commands:

>> x(y)
>> x(~y)
>> z = rand(1,5)
>> z(y)

Now let's get the logical indices and values of speedRaw  where it is strictly increasing. Enter

the following commands:

>> idx = diff(speedRaw) > 0
>> speedMono = speedRaw(idx);

How does the size of speedMono  compare to that of speedRaw ? They are different; think

about why this is the case. Note, to get help with built-in MATLAB functions like diff ,

rand , and tic , use the doc command to access the documentation. For example:

>> doc diff

The documentation for each function will show you the various ways the function can be

called, and examples for each syntax.

Now you have made a monotonic version of the speed measurements, but there are some

problems. First, how do you now align the PWM command values to the new speed vector if

they are different sizes? You can use the same logical index to isolate the corresponding PWM

values. Use the following command to filter the PWM values, and plot both the raw and

filtered values:

>> PWMcmdMono = PWMcmdRaw(idx);
>> plot(PWMcmdRaw,speedRaw,PWMcmdMono,speedMono)

To illustrate a second issue that arises when post-processing the information obtained from

the motor, enter the following commands:

>> speedMono == 0

 >> PWMcmdMono(speedMono == 0)

Due to the way we filtered out the non-monotonic points, a speed of zero is to be driven by a

non-zero PWM. Although commanding a small enough PWM value will result in zero speed

due to friction, it would waste power, especially if the system commands zero speed for a

long time. Therefore, you should change that value of PWMcmdMono  to 0 , which will have

the same result. Enter the following command:

>> PWMcmdMono(speedMono == 0) = 0;

Let's incorporate the post-processing into the live script. Add a new section before the

section labeled Graph raw data, and type the following code:

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0);             % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values
PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed
save motorResponse PWMcmdMono speedMono % save post-processed measurements

Now update the Graph raw data section to include both the raw data and post-processed

data. Add the following lines of code as follows:

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw,speedRaw)                            % raw speed measurements
hold on
plot(PWMcmdMono,speedMono)                          % non-monotonic measurements 
filtered out
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data','Location','northwest')

Finally, delete all device objects to release the Arduino Nano 33 IoT board to be used in other

processes. Add the following section at the end of your live script:

%% 6. Delete device objects

clear a dcm carrier enc

Saving and Rerunning Scripts

You now have a fully functional live script that automatically performs a series of

measurements, post-processes those measurements, saves the experimental data to disk,

and plots the results. You may want to repeat this analysis multiple times, for the same

motor or perhaps other DC motors. You can save your live script as a .mlx  file so that you

can run it again later or share it with other MATLAB users. Save your live script as

myMotorCharacterization.mlx . An .mlx  file contains not only your code and text

annotations, but also any numeric or graphical results that were displayed in the output

column. Thus, your live script is an active report of your analysis and results. Recall that you

can run your live script in its entirety using the Run button in the Live Editor window:

You can also run the live script directly in the Command Window using its name as the

command. Try running your live script:

>> myMotorCharacterization

Creating MATLAB Functions

Look at your Workspace. Which of the existing variables are useful to you? Which variables

are intermediate values from your live script that you no longer need?

You can compartmentalize parts of your MATLAB program into functions, so that the

intermediate calculations are hidden and you only need to manage inputs and outputs.

Looking at your live script, the first two sections are specific to this DC motor, encoder, and

test case ( PWMcmdRaw ). The following three sections (measure raw motor speed for each

PWM command, post-process and save data, and graph raw and post-processed data) can be

generalized for any DC motor, encoder, and test case. Let's create a MATLAB function for that

code. Start in the Live Editor window by clicking New > Live Function.

Next, you need to determine what the inputs and outputs to your function are. Section 3 of

your live script requires the test vector PWMcmdRaw , the DC motor object dcm , and the

encoder object enc .

The next line of code is an example of a possible function header. Place the inputs in

parentheses ( ( ) ) with the three variables listed above:

function z = Untitled(PWMcmdRaw,dcm,enc)

Now consider what variables you want to access from the motor characterization algorithm.

The only meaningful variables created in these sections are PWMcmdMono  and speedMono .

In the function header, list these two variables as outputs in square brackets ( [ ] ).

function [PWMcmdMono,speedMono] = Untitled(PWMcmdRaw,dcm,enc)

Finally, let's name the function so that we know how to call it in MATLAB code. Replace the

function name with myMotorFunction:

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

Now let's fill in the algorithm. Cut and paste sections 3, 4, and 5 from your live script to your

live function, between the function header and the end keyword.

4. Post-process and save data
idx = diff(speedRaw) > 0;               % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values

PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed

save motorResponse,'PWMcmdMono','speedMono' % save post-processed measurements

5. Graph raw and post-processed data
plot(PWMcmdRaw,speedRaw)   % raw speed measurements
hold on
plot(PWMcmdMono,speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data')

Save the file as myMotorFunction.mlx. Now you have a working MATLAB function that you

can call from any MATLAB code environment. Let's try calling it from your live script. In the

empty section of your live script, enter the call to your function:

1. Create test data
maxPWM = 1.00;                         % maximum duty cycle
incrPWM = 0.05;                        % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc                % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');           % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);        % Connect the encoder of 'M1' at the 
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono,speedMono] = characterizeMotorFcn(PWMcmdRaw,dcm,enc);

6. Delete device objects
clear a carrier dcm enc

Now run your live script and ensure it still works as before.

To further understand the benefits of using MATLAB functions, clear your Workspace in the

Command Window, and run your live script again.

>> clear

>> myMotorCharacterization

Examine your Workspace. The list of variables should be more concise now. There is one

more thing you may want to generalize in this function, and that is the name of the MAT-File

that we use in the save command. As of now, the analysis data gets saved to the same MAT-

File, motorResponse.mat , every time you call the function. This is not very useful if you

want to characterize multiple DC motors. Let's add a new input to the function for the file

name. In the live function, add the new input as shown below:

function[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,filename)

Now let's use the new input in the save command. Rewrite the save command as follows:

save(filename,'PWMcmdMono','speedMono')% save post-processed measurements

Finally, we need to modify the function call, since the function header has changed. In the live

script, change the function call as follows:

[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,'motorResponse');

Now you can save the analysis data to any MAT-file you want each time you call

myMotorFunction . Try calling your live script once more:

>> myMotorCharacterization

3.7 Designing a Motor Control System
In this section, you will learn:

CONTROL SYSTEM FLOW CHART

In this diagram, the blocks represent some functionality or process and the arrows represent

data flow. The directionality of the arrows indicate which process generates the data and

where the data is used. Simulink enables you to create your algorithm as a block diagram and

execute it over an interval of time.

Create the Blocks

Add the Sin block

Let's add some blocks to the model canvas. Open the Simulink Library Browser by clicking

the Library Browser button in the toolstrip. You will use a sine wave to simulate the speed

input.

Locate the Sine Wave block and drag it from the Simulink Library Browser window to the

Simulink Editor window.

Add a Lookup Table and Gain

Next you need to convert the user's speed signal coming from the Sine Wave block into a

PWM signal between -1 and 1. To do this, use a lookup table, which uses interpolation

among known data points to determine an output value for an arbitrary input value. Locate

the 1-D Lookup Table block in Simulink > Lookup Tables and drag it into the Simulink

Editor window.

The Lookup Table will output PWM command values between -1 and 1. Ultimately, you will

communicate the magnitude of the duty cycle to the DC motor hardware using integers that

range from -100 to 100 for the M1 M2 DC Motors block or -255 to 255 for the M3 M4 DC

Motors block. To prepare for this scaling, you need a Gain block. A Gain block multiplies a

Simulink signal by a constant value. Add a Gain block from Simulink > Math Operations:

Add a Sink block

Now let's add a block to visualize the output of the lookup table. Examine the Simulink >

Sinks library.

Connect the blocks

Once you've added the blocks to the simulink window, arrange them linearly as shown in the

image below.

Now you need to connect the blocks using signals. Left click on the outport and drag it to the

import and when the signal line turns solid, you have connected the signal and you can stop

the click and drag.

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft

end

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                 % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                       % Turn on motor

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

Design a motor control system that takes the users desired speed as input

How to determine the necessary PWM command to achieve that speed

Use simulink to model and simulate this system

Running the simulink model directly on the Arduino Nano 33 IoT

Visualising Measured Speed VS. PWM Duty Cycle

Now you have some real speed measurements in your Workspace. Let's visualize them

against their corresponding PWM command values using the plot  command we learned

about earlier. Add the following section to your live script to plot and annotate the raw data:

%% 4. Graph raw data

plot(PWMcmdRaw,speedRaw)      % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')

Execute the section and examine the figure in the output column of the Live Editor:

Notice some interesting features of the speed-PWM relationship that you can deduct from

studying the graph. There is a "dead zone" around PWM=0, where there is zero rotational

speed for non-zero PWM commands. Furthermore, there may be some non-monotonic

portions of the curve, where the measured speed does not increase with increasing PWM

command. This typically happens around PWM = +/-1, but could also result from

experimental error.

Post-Processing Speed Measurements

Collecting this data will be relevant later when you want to model how a more complex

machine that uses several motors behaves. Later you will create a motor control system in

Simulink, in which a user will request a motor speed in rpm (revolutions per minute). The

system will calculate the required PWM command to run the motor at that speed and send it

to the Arduino board. To perform this operation correctly, the controller needs a one-to-one

mapping between motor speeds and PWM commands. This means that there can only be

one PWM command per speed, so you must remove repeated values and nonincreasing

values from the data. First you must identify which values of speedRaw  are not in increasing

order. Examine speedRaw in the Command Window:

  >> speedRaw

Locate the multiple zeros in the speed measurements and look for nonincreasing values.

It is not easy to see where the nonincreasing values are, so let's make a first-order difference.

Enter the following command:

>> diff(speedRaw)

This will output another vector showing the differences between pairs of values in the array.

To remove non-increasing values in speedRaw , you need to know the indices where

diff(speedRaw)  is non-positive. To do this, you can use relational operators to create a

logical condition. Enter the following logical expressions, and interpret the result:

>> pi > 3
>> pi >= 3
>> pi == 3
>> pi < 3
>> x = 1:5
>> x == 3
>> x < 3
>> y = x < 3

For the first half of the previous commands (all the ones related to pi), the operations will

produce a different result based on the level of truth of the statement.

For the second set of operations (the ones related to the variables x  and y  ), the results are

different, since x  is an array containing the numbers 1 to 5. Examine x  and y  in your

Workspace. The numeric vector x  is the same size as the logical index vector y . You can

use a logical index expression or variable to index into a variable of the same size. Try the

following commands:

>> x(y)
>> x(~y)
>> z = rand(1,5)
>> z(y)

Now let's get the logical indices and values of speedRaw  where it is strictly increasing. Enter

the following commands:

>> idx = diff(speedRaw) > 0
>> speedMono = speedRaw(idx);

How does the size of speedMono  compare to that of speedRaw ? They are different; think

about why this is the case. Note, to get help with built-in MATLAB functions like diff ,

rand , and tic , use the doc command to access the documentation. For example:

>> doc diff

The documentation for each function will show you the various ways the function can be

called, and examples for each syntax.

Now you have made a monotonic version of the speed measurements, but there are some

problems. First, how do you now align the PWM command values to the new speed vector if

they are different sizes? You can use the same logical index to isolate the corresponding PWM

values. Use the following command to filter the PWM values, and plot both the raw and

filtered values:

>> PWMcmdMono = PWMcmdRaw(idx);
>> plot(PWMcmdRaw,speedRaw,PWMcmdMono,speedMono)

To illustrate a second issue that arises when post-processing the information obtained from

the motor, enter the following commands:

>> speedMono == 0

 >> PWMcmdMono(speedMono == 0)

Due to the way we filtered out the non-monotonic points, a speed of zero is to be driven by a

non-zero PWM. Although commanding a small enough PWM value will result in zero speed

due to friction, it would waste power, especially if the system commands zero speed for a

long time. Therefore, you should change that value of PWMcmdMono  to 0 , which will have

the same result. Enter the following command:

>> PWMcmdMono(speedMono == 0) = 0;

Let's incorporate the post-processing into the live script. Add a new section before the

section labeled Graph raw data, and type the following code:

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0);             % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values
PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed
save motorResponse PWMcmdMono speedMono % save post-processed measurements

Now update the Graph raw data section to include both the raw data and post-processed

data. Add the following lines of code as follows:

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw,speedRaw)                            % raw speed measurements
hold on
plot(PWMcmdMono,speedMono)                          % non-monotonic measurements 
filtered out
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data','Location','northwest')

Finally, delete all device objects to release the Arduino Nano 33 IoT board to be used in other

processes. Add the following section at the end of your live script:

%% 6. Delete device objects

clear a dcm carrier enc

Saving and Rerunning Scripts

You now have a fully functional live script that automatically performs a series of

measurements, post-processes those measurements, saves the experimental data to disk,

and plots the results. You may want to repeat this analysis multiple times, for the same

motor or perhaps other DC motors. You can save your live script as a .mlx  file so that you

can run it again later or share it with other MATLAB users. Save your live script as

myMotorCharacterization.mlx . An .mlx  file contains not only your code and text

annotations, but also any numeric or graphical results that were displayed in the output

column. Thus, your live script is an active report of your analysis and results. Recall that you

can run your live script in its entirety using the Run button in the Live Editor window:

You can also run the live script directly in the Command Window using its name as the

command. Try running your live script:

>> myMotorCharacterization

Creating MATLAB Functions

Look at your Workspace. Which of the existing variables are useful to you? Which variables

are intermediate values from your live script that you no longer need?

You can compartmentalize parts of your MATLAB program into functions, so that the

intermediate calculations are hidden and you only need to manage inputs and outputs.

Looking at your live script, the first two sections are specific to this DC motor, encoder, and

test case ( PWMcmdRaw ). The following three sections (measure raw motor speed for each

PWM command, post-process and save data, and graph raw and post-processed data) can be

generalized for any DC motor, encoder, and test case. Let's create a MATLAB function for that

code. Start in the Live Editor window by clicking New > Live Function.

Next, you need to determine what the inputs and outputs to your function are. Section 3 of

your live script requires the test vector PWMcmdRaw , the DC motor object dcm , and the

encoder object enc .

The next line of code is an example of a possible function header. Place the inputs in

parentheses ( ( ) ) with the three variables listed above:

function z = Untitled(PWMcmdRaw,dcm,enc)

Now consider what variables you want to access from the motor characterization algorithm.

The only meaningful variables created in these sections are PWMcmdMono  and speedMono .

In the function header, list these two variables as outputs in square brackets ( [ ] ).

function [PWMcmdMono,speedMono] = Untitled(PWMcmdRaw,dcm,enc)

Finally, let's name the function so that we know how to call it in MATLAB code. Replace the

function name with myMotorFunction:

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

Now let's fill in the algorithm. Cut and paste sections 3, 4, and 5 from your live script to your

live function, between the function header and the end keyword.

4. Post-process and save data
idx = diff(speedRaw) > 0;               % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values

PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed

save motorResponse,'PWMcmdMono','speedMono' % save post-processed measurements

5. Graph raw and post-processed data
plot(PWMcmdRaw,speedRaw)   % raw speed measurements
hold on
plot(PWMcmdMono,speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data')

Save the file as myMotorFunction.mlx. Now you have a working MATLAB function that you

can call from any MATLAB code environment. Let's try calling it from your live script. In the

empty section of your live script, enter the call to your function:

1. Create test data
maxPWM = 1.00;                         % maximum duty cycle
incrPWM = 0.05;                        % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc                % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');           % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);        % Connect the encoder of 'M1' at the 
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono,speedMono] = characterizeMotorFcn(PWMcmdRaw,dcm,enc);

6. Delete device objects
clear a carrier dcm enc

Now run your live script and ensure it still works as before.

To further understand the benefits of using MATLAB functions, clear your Workspace in the

Command Window, and run your live script again.

>> clear

>> myMotorCharacterization

Examine your Workspace. The list of variables should be more concise now. There is one

more thing you may want to generalize in this function, and that is the name of the MAT-File

that we use in the save command. As of now, the analysis data gets saved to the same MAT-

File, motorResponse.mat , every time you call the function. This is not very useful if you

want to characterize multiple DC motors. Let's add a new input to the function for the file

name. In the live function, add the new input as shown below:

function[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,filename)

Now let's use the new input in the save command. Rewrite the save command as follows:

save(filename,'PWMcmdMono','speedMono')% save post-processed measurements

Finally, we need to modify the function call, since the function header has changed. In the live

script, change the function call as follows:

[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,'motorResponse');

Now you can save the analysis data to any MAT-file you want each time you call

myMotorFunction . Try calling your live script once more:

>> myMotorCharacterization

3.7 Designing a Motor Control System
In this section, you will learn:

CONTROL SYSTEM FLOW CHART

In this diagram, the blocks represent some functionality or process and the arrows represent

data flow. The directionality of the arrows indicate which process generates the data and

where the data is used. Simulink enables you to create your algorithm as a block diagram and

execute it over an interval of time.

Create the Blocks

Add the Sin block

Let's add some blocks to the model canvas. Open the Simulink Library Browser by clicking

the Library Browser button in the toolstrip. You will use a sine wave to simulate the speed

input.

Locate the Sine Wave block and drag it from the Simulink Library Browser window to the

Simulink Editor window.

Add a Lookup Table and Gain

Next you need to convert the user's speed signal coming from the Sine Wave block into a

PWM signal between -1 and 1. To do this, use a lookup table, which uses interpolation

among known data points to determine an output value for an arbitrary input value. Locate

the 1-D Lookup Table block in Simulink > Lookup Tables and drag it into the Simulink

Editor window.

The Lookup Table will output PWM command values between -1 and 1. Ultimately, you will

communicate the magnitude of the duty cycle to the DC motor hardware using integers that

range from -100 to 100 for the M1 M2 DC Motors block or -255 to 255 for the M3 M4 DC

Motors block. To prepare for this scaling, you need a Gain block. A Gain block multiplies a

Simulink signal by a constant value. Add a Gain block from Simulink > Math Operations:

Add a Sink block

Now let's add a block to visualize the output of the lookup table. Examine the Simulink >

Sinks library.

Connect the blocks

Once you've added the blocks to the simulink window, arrange them linearly as shown in the

image below.

Now you need to connect the blocks using signals. Left click on the outport and drag it to the

import and when the signal line turns solid, you have connected the signal and you can stop

the click and drag.

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft

end

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                 % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                       % Turn on motor

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end
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Visualising Measured Speed VS. PWM Duty Cycle

Now you have some real speed measurements in your Workspace. Let's visualize them

against their corresponding PWM command values using the plot  command we learned

about earlier. Add the following section to your live script to plot and annotate the raw data:

%% 4. Graph raw data

plot(PWMcmdRaw,speedRaw)      % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')

Execute the section and examine the figure in the output column of the Live Editor:

Notice some interesting features of the speed-PWM relationship that you can deduct from

studying the graph. There is a "dead zone" around PWM=0, where there is zero rotational

speed for non-zero PWM commands. Furthermore, there may be some non-monotonic

portions of the curve, where the measured speed does not increase with increasing PWM

command. This typically happens around PWM = +/-1, but could also result from

experimental error.

Post-Processing Speed Measurements

Collecting this data will be relevant later when you want to model how a more complex

machine that uses several motors behaves. Later you will create a motor control system in

Simulink, in which a user will request a motor speed in rpm (revolutions per minute). The

system will calculate the required PWM command to run the motor at that speed and send it

to the Arduino board. To perform this operation correctly, the controller needs a one-to-one

mapping between motor speeds and PWM commands. This means that there can only be

one PWM command per speed, so you must remove repeated values and nonincreasing

values from the data. First you must identify which values of speedRaw  are not in increasing

order. Examine speedRaw in the Command Window:

  >> speedRaw

Locate the multiple zeros in the speed measurements and look for nonincreasing values.

It is not easy to see where the nonincreasing values are, so let's make a first-order difference.

Enter the following command:

>> diff(speedRaw)

This will output another vector showing the differences between pairs of values in the array.

To remove non-increasing values in speedRaw , you need to know the indices where

diff(speedRaw)  is non-positive. To do this, you can use relational operators to create a

logical condition. Enter the following logical expressions, and interpret the result:

>> pi > 3
>> pi >= 3
>> pi == 3
>> pi < 3
>> x = 1:5
>> x == 3
>> x < 3
>> y = x < 3

For the first half of the previous commands (all the ones related to pi), the operations will

produce a different result based on the level of truth of the statement.

For the second set of operations (the ones related to the variables x  and y  ), the results are

different, since x  is an array containing the numbers 1 to 5. Examine x  and y  in your

Workspace. The numeric vector x  is the same size as the logical index vector y . You can

use a logical index expression or variable to index into a variable of the same size. Try the

following commands:

>> x(y)
>> x(~y)
>> z = rand(1,5)
>> z(y)

Now let's get the logical indices and values of speedRaw  where it is strictly increasing. Enter

the following commands:

>> idx = diff(speedRaw) > 0
>> speedMono = speedRaw(idx);

How does the size of speedMono  compare to that of speedRaw ? They are different; think

about why this is the case. Note, to get help with built-in MATLAB functions like diff ,

rand , and tic , use the doc command to access the documentation. For example:

>> doc diff

The documentation for each function will show you the various ways the function can be

called, and examples for each syntax.

Now you have made a monotonic version of the speed measurements, but there are some

problems. First, how do you now align the PWM command values to the new speed vector if

they are different sizes? You can use the same logical index to isolate the corresponding PWM

values. Use the following command to filter the PWM values, and plot both the raw and

filtered values:

>> PWMcmdMono = PWMcmdRaw(idx);
>> plot(PWMcmdRaw,speedRaw,PWMcmdMono,speedMono)

To illustrate a second issue that arises when post-processing the information obtained from

the motor, enter the following commands:

>> speedMono == 0

 >> PWMcmdMono(speedMono == 0)

Due to the way we filtered out the non-monotonic points, a speed of zero is to be driven by a

non-zero PWM. Although commanding a small enough PWM value will result in zero speed

due to friction, it would waste power, especially if the system commands zero speed for a

long time. Therefore, you should change that value of PWMcmdMono  to 0 , which will have

the same result. Enter the following command:

>> PWMcmdMono(speedMono == 0) = 0;

Let's incorporate the post-processing into the live script. Add a new section before the

section labeled Graph raw data, and type the following code:

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0);             % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values
PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed
save motorResponse PWMcmdMono speedMono % save post-processed measurements

Now update the Graph raw data section to include both the raw data and post-processed

data. Add the following lines of code as follows:

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw,speedRaw)                            % raw speed measurements
hold on
plot(PWMcmdMono,speedMono)                          % non-monotonic measurements 
filtered out
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data','Location','northwest')

Finally, delete all device objects to release the Arduino Nano 33 IoT board to be used in other

processes. Add the following section at the end of your live script:

%% 6. Delete device objects

clear a dcm carrier enc

Saving and Rerunning Scripts

You now have a fully functional live script that automatically performs a series of

measurements, post-processes those measurements, saves the experimental data to disk,

and plots the results. You may want to repeat this analysis multiple times, for the same

motor or perhaps other DC motors. You can save your live script as a .mlx  file so that you

can run it again later or share it with other MATLAB users. Save your live script as

myMotorCharacterization.mlx . An .mlx  file contains not only your code and text

annotations, but also any numeric or graphical results that were displayed in the output

column. Thus, your live script is an active report of your analysis and results. Recall that you

can run your live script in its entirety using the Run button in the Live Editor window:

You can also run the live script directly in the Command Window using its name as the

command. Try running your live script:

>> myMotorCharacterization

Creating MATLAB Functions

Look at your Workspace. Which of the existing variables are useful to you? Which variables

are intermediate values from your live script that you no longer need?

You can compartmentalize parts of your MATLAB program into functions, so that the

intermediate calculations are hidden and you only need to manage inputs and outputs.

Looking at your live script, the first two sections are specific to this DC motor, encoder, and

test case ( PWMcmdRaw ). The following three sections (measure raw motor speed for each

PWM command, post-process and save data, and graph raw and post-processed data) can be

generalized for any DC motor, encoder, and test case. Let's create a MATLAB function for that

code. Start in the Live Editor window by clicking New > Live Function.

Next, you need to determine what the inputs and outputs to your function are. Section 3 of

your live script requires the test vector PWMcmdRaw , the DC motor object dcm , and the

encoder object enc .

The next line of code is an example of a possible function header. Place the inputs in

parentheses ( ( ) ) with the three variables listed above:

function z = Untitled(PWMcmdRaw,dcm,enc)

Now consider what variables you want to access from the motor characterization algorithm.

The only meaningful variables created in these sections are PWMcmdMono  and speedMono .

In the function header, list these two variables as outputs in square brackets ( [ ] ).

function [PWMcmdMono,speedMono] = Untitled(PWMcmdRaw,dcm,enc)

Finally, let's name the function so that we know how to call it in MATLAB code. Replace the

function name with myMotorFunction:

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

Now let's fill in the algorithm. Cut and paste sections 3, 4, and 5 from your live script to your

live function, between the function header and the end keyword.

4. Post-process and save data
idx = diff(speedRaw) > 0;               % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values

PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed

save motorResponse,'PWMcmdMono','speedMono' % save post-processed measurements

5. Graph raw and post-processed data
plot(PWMcmdRaw,speedRaw)   % raw speed measurements
hold on
plot(PWMcmdMono,speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data')

Save the file as myMotorFunction.mlx. Now you have a working MATLAB function that you

can call from any MATLAB code environment. Let's try calling it from your live script. In the

empty section of your live script, enter the call to your function:

1. Create test data
maxPWM = 1.00;                         % maximum duty cycle
incrPWM = 0.05;                        % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc                % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');           % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);        % Connect the encoder of 'M1' at the 
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono,speedMono] = characterizeMotorFcn(PWMcmdRaw,dcm,enc);

6. Delete device objects
clear a carrier dcm enc

Now run your live script and ensure it still works as before.

To further understand the benefits of using MATLAB functions, clear your Workspace in the

Command Window, and run your live script again.

>> clear

>> myMotorCharacterization

Examine your Workspace. The list of variables should be more concise now. There is one

more thing you may want to generalize in this function, and that is the name of the MAT-File

that we use in the save command. As of now, the analysis data gets saved to the same MAT-

File, motorResponse.mat , every time you call the function. This is not very useful if you

want to characterize multiple DC motors. Let's add a new input to the function for the file

name. In the live function, add the new input as shown below:

function[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,filename)

Now let's use the new input in the save command. Rewrite the save command as follows:

save(filename,'PWMcmdMono','speedMono')% save post-processed measurements

Finally, we need to modify the function call, since the function header has changed. In the live

script, change the function call as follows:

[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,'motorResponse');

Now you can save the analysis data to any MAT-file you want each time you call

myMotorFunction . Try calling your live script once more:

>> myMotorCharacterization

3.7 Designing a Motor Control System
In this section, you will learn:

CONTROL SYSTEM FLOW CHART

In this diagram, the blocks represent some functionality or process and the arrows represent

data flow. The directionality of the arrows indicate which process generates the data and

where the data is used. Simulink enables you to create your algorithm as a block diagram and

execute it over an interval of time.

Create the Blocks

Add the Sin block

Let's add some blocks to the model canvas. Open the Simulink Library Browser by clicking

the Library Browser button in the toolstrip. You will use a sine wave to simulate the speed

input.

Locate the Sine Wave block and drag it from the Simulink Library Browser window to the

Simulink Editor window.

Add a Lookup Table and Gain

Next you need to convert the user's speed signal coming from the Sine Wave block into a

PWM signal between -1 and 1. To do this, use a lookup table, which uses interpolation

among known data points to determine an output value for an arbitrary input value. Locate

the 1-D Lookup Table block in Simulink > Lookup Tables and drag it into the Simulink

Editor window.

The Lookup Table will output PWM command values between -1 and 1. Ultimately, you will

communicate the magnitude of the duty cycle to the DC motor hardware using integers that

range from -100 to 100 for the M1 M2 DC Motors block or -255 to 255 for the M3 M4 DC

Motors block. To prepare for this scaling, you need a Gain block. A Gain block multiplies a

Simulink signal by a constant value. Add a Gain block from Simulink > Math Operations:

Add a Sink block

Now let's add a block to visualize the output of the lookup table. Examine the Simulink >

Sinks library.

Connect the blocks

Once you've added the blocks to the simulink window, arrange them linearly as shown in the

image below.

Now you need to connect the blocks using signals. Left click on the outport and drag it to the

import and when the signal line turns solid, you have connected the signal and you can stop

the click and drag.

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft

end

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                 % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                       % Turn on motor

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end
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PWMcmdRaw, dcm and encoder object enc. The outputs to the function are 
PWMcmdMono and speedMono. 

 
42. To make the entire algorithm, let’s take some of the code from the livescript and 

copy to the live function. 

 
43. Let’s save the Live Function as myMotorFunction.mlx.  
44. Now we can actually call the function in the Live Script. 

Visualising Measured Speed VS. PWM Duty Cycle

Now you have some real speed measurements in your Workspace. Let's visualize them

against their corresponding PWM command values using the plot  command we learned

about earlier. Add the following section to your live script to plot and annotate the raw data:

%% 4. Graph raw data

plot(PWMcmdRaw,speedRaw)      % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')

Execute the section and examine the figure in the output column of the Live Editor:

Notice some interesting features of the speed-PWM relationship that you can deduct from

studying the graph. There is a "dead zone" around PWM=0, where there is zero rotational

speed for non-zero PWM commands. Furthermore, there may be some non-monotonic

portions of the curve, where the measured speed does not increase with increasing PWM

command. This typically happens around PWM = +/-1, but could also result from

experimental error.

Post-Processing Speed Measurements

Collecting this data will be relevant later when you want to model how a more complex

machine that uses several motors behaves. Later you will create a motor control system in

Simulink, in which a user will request a motor speed in rpm (revolutions per minute). The

system will calculate the required PWM command to run the motor at that speed and send it

to the Arduino board. To perform this operation correctly, the controller needs a one-to-one

mapping between motor speeds and PWM commands. This means that there can only be

one PWM command per speed, so you must remove repeated values and nonincreasing

values from the data. First you must identify which values of speedRaw  are not in increasing

order. Examine speedRaw in the Command Window:

  >> speedRaw

Locate the multiple zeros in the speed measurements and look for nonincreasing values.

It is not easy to see where the nonincreasing values are, so let's make a first-order difference.

Enter the following command:

>> diff(speedRaw)

This will output another vector showing the differences between pairs of values in the array.

To remove non-increasing values in speedRaw , you need to know the indices where

diff(speedRaw)  is non-positive. To do this, you can use relational operators to create a

logical condition. Enter the following logical expressions, and interpret the result:

>> pi > 3
>> pi >= 3
>> pi == 3
>> pi < 3
>> x = 1:5
>> x == 3
>> x < 3
>> y = x < 3

For the first half of the previous commands (all the ones related to pi), the operations will

produce a different result based on the level of truth of the statement.

For the second set of operations (the ones related to the variables x  and y  ), the results are

different, since x  is an array containing the numbers 1 to 5. Examine x  and y  in your

Workspace. The numeric vector x  is the same size as the logical index vector y . You can

use a logical index expression or variable to index into a variable of the same size. Try the

following commands:

>> x(y)
>> x(~y)
>> z = rand(1,5)
>> z(y)

Now let's get the logical indices and values of speedRaw  where it is strictly increasing. Enter

the following commands:

>> idx = diff(speedRaw) > 0
>> speedMono = speedRaw(idx);

How does the size of speedMono  compare to that of speedRaw ? They are different; think

about why this is the case. Note, to get help with built-in MATLAB functions like diff ,

rand , and tic , use the doc command to access the documentation. For example:

>> doc diff

The documentation for each function will show you the various ways the function can be

called, and examples for each syntax.

Now you have made a monotonic version of the speed measurements, but there are some

problems. First, how do you now align the PWM command values to the new speed vector if

they are different sizes? You can use the same logical index to isolate the corresponding PWM

values. Use the following command to filter the PWM values, and plot both the raw and

filtered values:

>> PWMcmdMono = PWMcmdRaw(idx);
>> plot(PWMcmdRaw,speedRaw,PWMcmdMono,speedMono)

To illustrate a second issue that arises when post-processing the information obtained from

the motor, enter the following commands:

>> speedMono == 0

 >> PWMcmdMono(speedMono == 0)

Due to the way we filtered out the non-monotonic points, a speed of zero is to be driven by a

non-zero PWM. Although commanding a small enough PWM value will result in zero speed

due to friction, it would waste power, especially if the system commands zero speed for a

long time. Therefore, you should change that value of PWMcmdMono  to 0 , which will have

the same result. Enter the following command:

>> PWMcmdMono(speedMono == 0) = 0;

Let's incorporate the post-processing into the live script. Add a new section before the

section labeled Graph raw data, and type the following code:

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0);             % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values
PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed
save motorResponse PWMcmdMono speedMono % save post-processed measurements

Now update the Graph raw data section to include both the raw data and post-processed

data. Add the following lines of code as follows:

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw,speedRaw)                            % raw speed measurements
hold on
plot(PWMcmdMono,speedMono)                          % non-monotonic measurements 
filtered out
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data','Location','northwest')

Finally, delete all device objects to release the Arduino Nano 33 IoT board to be used in other

processes. Add the following section at the end of your live script:

%% 6. Delete device objects

clear a dcm carrier enc

Saving and Rerunning Scripts

You now have a fully functional live script that automatically performs a series of

measurements, post-processes those measurements, saves the experimental data to disk,

and plots the results. You may want to repeat this analysis multiple times, for the same

motor or perhaps other DC motors. You can save your live script as a .mlx  file so that you

can run it again later or share it with other MATLAB users. Save your live script as

myMotorCharacterization.mlx . An .mlx  file contains not only your code and text

annotations, but also any numeric or graphical results that were displayed in the output

column. Thus, your live script is an active report of your analysis and results. Recall that you

can run your live script in its entirety using the Run button in the Live Editor window:

You can also run the live script directly in the Command Window using its name as the

command. Try running your live script:

>> myMotorCharacterization

Creating MATLAB Functions

Look at your Workspace. Which of the existing variables are useful to you? Which variables

are intermediate values from your live script that you no longer need?

You can compartmentalize parts of your MATLAB program into functions, so that the

intermediate calculations are hidden and you only need to manage inputs and outputs.

Looking at your live script, the first two sections are specific to this DC motor, encoder, and

test case ( PWMcmdRaw ). The following three sections (measure raw motor speed for each

PWM command, post-process and save data, and graph raw and post-processed data) can be

generalized for any DC motor, encoder, and test case. Let's create a MATLAB function for that

code. Start in the Live Editor window by clicking New > Live Function.

Next, you need to determine what the inputs and outputs to your function are. Section 3 of

your live script requires the test vector PWMcmdRaw , the DC motor object dcm , and the

encoder object enc .

The next line of code is an example of a possible function header. Place the inputs in

parentheses ( ( ) ) with the three variables listed above:

function z = Untitled(PWMcmdRaw,dcm,enc)

Now consider what variables you want to access from the motor characterization algorithm.

The only meaningful variables created in these sections are PWMcmdMono  and speedMono .

In the function header, list these two variables as outputs in square brackets ( [ ] ).

function [PWMcmdMono,speedMono] = Untitled(PWMcmdRaw,dcm,enc)

Finally, let's name the function so that we know how to call it in MATLAB code. Replace the

function name with myMotorFunction:

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

Now let's fill in the algorithm. Cut and paste sections 3, 4, and 5 from your live script to your

live function, between the function header and the end keyword.

4. Post-process and save data
idx = diff(speedRaw) > 0;               % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values

PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed

save motorResponse,'PWMcmdMono','speedMono' % save post-processed measurements

5. Graph raw and post-processed data
plot(PWMcmdRaw,speedRaw)   % raw speed measurements
hold on
plot(PWMcmdMono,speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data')

Save the file as myMotorFunction.mlx. Now you have a working MATLAB function that you

can call from any MATLAB code environment. Let's try calling it from your live script. In the

empty section of your live script, enter the call to your function:

1. Create test data
maxPWM = 1.00;                         % maximum duty cycle
incrPWM = 0.05;                        % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc                % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');           % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);        % Connect the encoder of 'M1' at the 
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono,speedMono] = characterizeMotorFcn(PWMcmdRaw,dcm,enc);

6. Delete device objects
clear a carrier dcm enc

Now run your live script and ensure it still works as before.

To further understand the benefits of using MATLAB functions, clear your Workspace in the

Command Window, and run your live script again.

>> clear

>> myMotorCharacterization

Examine your Workspace. The list of variables should be more concise now. There is one

more thing you may want to generalize in this function, and that is the name of the MAT-File

that we use in the save command. As of now, the analysis data gets saved to the same MAT-

File, motorResponse.mat , every time you call the function. This is not very useful if you

want to characterize multiple DC motors. Let's add a new input to the function for the file

name. In the live function, add the new input as shown below:

function[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,filename)

Now let's use the new input in the save command. Rewrite the save command as follows:

save(filename,'PWMcmdMono','speedMono')% save post-processed measurements

Finally, we need to modify the function call, since the function header has changed. In the live

script, change the function call as follows:

[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,'motorResponse');

Now you can save the analysis data to any MAT-file you want each time you call

myMotorFunction . Try calling your live script once more:

>> myMotorCharacterization

3.7 Designing a Motor Control System
In this section, you will learn:

CONTROL SYSTEM FLOW CHART

In this diagram, the blocks represent some functionality or process and the arrows represent

data flow. The directionality of the arrows indicate which process generates the data and

where the data is used. Simulink enables you to create your algorithm as a block diagram and

execute it over an interval of time.

Create the Blocks

Add the Sin block

Let's add some blocks to the model canvas. Open the Simulink Library Browser by clicking

the Library Browser button in the toolstrip. You will use a sine wave to simulate the speed

input.

Locate the Sine Wave block and drag it from the Simulink Library Browser window to the

Simulink Editor window.

Add a Lookup Table and Gain

Next you need to convert the user's speed signal coming from the Sine Wave block into a

PWM signal between -1 and 1. To do this, use a lookup table, which uses interpolation

among known data points to determine an output value for an arbitrary input value. Locate

the 1-D Lookup Table block in Simulink > Lookup Tables and drag it into the Simulink

Editor window.

The Lookup Table will output PWM command values between -1 and 1. Ultimately, you will

communicate the magnitude of the duty cycle to the DC motor hardware using integers that

range from -100 to 100 for the M1 M2 DC Motors block or -255 to 255 for the M3 M4 DC

Motors block. To prepare for this scaling, you need a Gain block. A Gain block multiplies a

Simulink signal by a constant value. Add a Gain block from Simulink > Math Operations:

Add a Sink block

Now let's add a block to visualize the output of the lookup table. Examine the Simulink >

Sinks library.

Connect the blocks

Once you've added the blocks to the simulink window, arrange them linearly as shown in the

image below.

Now you need to connect the blocks using signals. Left click on the outport and drag it to the

import and when the signal line turns solid, you have connected the signal and you can stop

the click and drag.

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft

end

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                 % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                       % Turn on motor

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end
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Visualising Measured Speed VS. PWM Duty Cycle

Now you have some real speed measurements in your Workspace. Let's visualize them

against their corresponding PWM command values using the plot  command we learned

about earlier. Add the following section to your live script to plot and annotate the raw data:

%% 4. Graph raw data

plot(PWMcmdRaw,speedRaw)      % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')

Execute the section and examine the figure in the output column of the Live Editor:

Notice some interesting features of the speed-PWM relationship that you can deduct from

studying the graph. There is a "dead zone" around PWM=0, where there is zero rotational

speed for non-zero PWM commands. Furthermore, there may be some non-monotonic

portions of the curve, where the measured speed does not increase with increasing PWM

command. This typically happens around PWM = +/-1, but could also result from

experimental error.

Post-Processing Speed Measurements

Collecting this data will be relevant later when you want to model how a more complex

machine that uses several motors behaves. Later you will create a motor control system in

Simulink, in which a user will request a motor speed in rpm (revolutions per minute). The

system will calculate the required PWM command to run the motor at that speed and send it

to the Arduino board. To perform this operation correctly, the controller needs a one-to-one

mapping between motor speeds and PWM commands. This means that there can only be

one PWM command per speed, so you must remove repeated values and nonincreasing

values from the data. First you must identify which values of speedRaw  are not in increasing

order. Examine speedRaw in the Command Window:

  >> speedRaw

Locate the multiple zeros in the speed measurements and look for nonincreasing values.

It is not easy to see where the nonincreasing values are, so let's make a first-order difference.

Enter the following command:

>> diff(speedRaw)

This will output another vector showing the differences between pairs of values in the array.

To remove non-increasing values in speedRaw , you need to know the indices where

diff(speedRaw)  is non-positive. To do this, you can use relational operators to create a

logical condition. Enter the following logical expressions, and interpret the result:

>> pi > 3
>> pi >= 3
>> pi == 3
>> pi < 3
>> x = 1:5
>> x == 3
>> x < 3
>> y = x < 3

For the first half of the previous commands (all the ones related to pi), the operations will

produce a different result based on the level of truth of the statement.

For the second set of operations (the ones related to the variables x  and y  ), the results are

different, since x  is an array containing the numbers 1 to 5. Examine x  and y  in your

Workspace. The numeric vector x  is the same size as the logical index vector y . You can

use a logical index expression or variable to index into a variable of the same size. Try the

following commands:

>> x(y)
>> x(~y)
>> z = rand(1,5)
>> z(y)

Now let's get the logical indices and values of speedRaw  where it is strictly increasing. Enter

the following commands:

>> idx = diff(speedRaw) > 0
>> speedMono = speedRaw(idx);

How does the size of speedMono  compare to that of speedRaw ? They are different; think

about why this is the case. Note, to get help with built-in MATLAB functions like diff ,

rand , and tic , use the doc command to access the documentation. For example:

>> doc diff

The documentation for each function will show you the various ways the function can be

called, and examples for each syntax.

Now you have made a monotonic version of the speed measurements, but there are some

problems. First, how do you now align the PWM command values to the new speed vector if

they are different sizes? You can use the same logical index to isolate the corresponding PWM

values. Use the following command to filter the PWM values, and plot both the raw and

filtered values:

>> PWMcmdMono = PWMcmdRaw(idx);
>> plot(PWMcmdRaw,speedRaw,PWMcmdMono,speedMono)

To illustrate a second issue that arises when post-processing the information obtained from

the motor, enter the following commands:

>> speedMono == 0

 >> PWMcmdMono(speedMono == 0)

Due to the way we filtered out the non-monotonic points, a speed of zero is to be driven by a

non-zero PWM. Although commanding a small enough PWM value will result in zero speed

due to friction, it would waste power, especially if the system commands zero speed for a

long time. Therefore, you should change that value of PWMcmdMono  to 0 , which will have

the same result. Enter the following command:

>> PWMcmdMono(speedMono == 0) = 0;

Let's incorporate the post-processing into the live script. Add a new section before the

section labeled Graph raw data, and type the following code:

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0);             % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values
PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed
save motorResponse PWMcmdMono speedMono % save post-processed measurements

Now update the Graph raw data section to include both the raw data and post-processed

data. Add the following lines of code as follows:

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw,speedRaw)                            % raw speed measurements
hold on
plot(PWMcmdMono,speedMono)                          % non-monotonic measurements 
filtered out
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data','Location','northwest')

Finally, delete all device objects to release the Arduino Nano 33 IoT board to be used in other

processes. Add the following section at the end of your live script:

%% 6. Delete device objects

clear a dcm carrier enc

Saving and Rerunning Scripts

You now have a fully functional live script that automatically performs a series of

measurements, post-processes those measurements, saves the experimental data to disk,

and plots the results. You may want to repeat this analysis multiple times, for the same

motor or perhaps other DC motors. You can save your live script as a .mlx  file so that you

can run it again later or share it with other MATLAB users. Save your live script as

myMotorCharacterization.mlx . An .mlx  file contains not only your code and text

annotations, but also any numeric or graphical results that were displayed in the output

column. Thus, your live script is an active report of your analysis and results. Recall that you

can run your live script in its entirety using the Run button in the Live Editor window:

You can also run the live script directly in the Command Window using its name as the

command. Try running your live script:

>> myMotorCharacterization

Creating MATLAB Functions

Look at your Workspace. Which of the existing variables are useful to you? Which variables

are intermediate values from your live script that you no longer need?

You can compartmentalize parts of your MATLAB program into functions, so that the

intermediate calculations are hidden and you only need to manage inputs and outputs.

Looking at your live script, the first two sections are specific to this DC motor, encoder, and

test case ( PWMcmdRaw ). The following three sections (measure raw motor speed for each

PWM command, post-process and save data, and graph raw and post-processed data) can be

generalized for any DC motor, encoder, and test case. Let's create a MATLAB function for that

code. Start in the Live Editor window by clicking New > Live Function.

Next, you need to determine what the inputs and outputs to your function are. Section 3 of

your live script requires the test vector PWMcmdRaw , the DC motor object dcm , and the

encoder object enc .

The next line of code is an example of a possible function header. Place the inputs in

parentheses ( ( ) ) with the three variables listed above:

function z = Untitled(PWMcmdRaw,dcm,enc)

Now consider what variables you want to access from the motor characterization algorithm.

The only meaningful variables created in these sections are PWMcmdMono  and speedMono .

In the function header, list these two variables as outputs in square brackets ( [ ] ).

function [PWMcmdMono,speedMono] = Untitled(PWMcmdRaw,dcm,enc)

Finally, let's name the function so that we know how to call it in MATLAB code. Replace the

function name with myMotorFunction:

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

Now let's fill in the algorithm. Cut and paste sections 3, 4, and 5 from your live script to your

live function, between the function header and the end keyword.

4. Post-process and save data
idx = diff(speedRaw) > 0;               % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values

PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed

save motorResponse,'PWMcmdMono','speedMono' % save post-processed measurements

5. Graph raw and post-processed data
plot(PWMcmdRaw,speedRaw)   % raw speed measurements
hold on
plot(PWMcmdMono,speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data')

Save the file as myMotorFunction.mlx. Now you have a working MATLAB function that you

can call from any MATLAB code environment. Let's try calling it from your live script. In the

empty section of your live script, enter the call to your function:

1. Create test data
maxPWM = 1.00;                         % maximum duty cycle
incrPWM = 0.05;                        % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc                % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');           % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);        % Connect the encoder of 'M1' at the 
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono,speedMono] = characterizeMotorFcn(PWMcmdRaw,dcm,enc);

6. Delete device objects
clear a carrier dcm enc

Now run your live script and ensure it still works as before.

To further understand the benefits of using MATLAB functions, clear your Workspace in the

Command Window, and run your live script again.

>> clear

>> myMotorCharacterization

Examine your Workspace. The list of variables should be more concise now. There is one

more thing you may want to generalize in this function, and that is the name of the MAT-File

that we use in the save command. As of now, the analysis data gets saved to the same MAT-

File, motorResponse.mat , every time you call the function. This is not very useful if you

want to characterize multiple DC motors. Let's add a new input to the function for the file

name. In the live function, add the new input as shown below:

function[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,filename)

Now let's use the new input in the save command. Rewrite the save command as follows:

save(filename,'PWMcmdMono','speedMono')% save post-processed measurements

Finally, we need to modify the function call, since the function header has changed. In the live

script, change the function call as follows:

[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,'motorResponse');

Now you can save the analysis data to any MAT-file you want each time you call

myMotorFunction . Try calling your live script once more:

>> myMotorCharacterization

3.7 Designing a Motor Control System
In this section, you will learn:

CONTROL SYSTEM FLOW CHART

In this diagram, the blocks represent some functionality or process and the arrows represent

data flow. The directionality of the arrows indicate which process generates the data and

where the data is used. Simulink enables you to create your algorithm as a block diagram and

execute it over an interval of time.

Create the Blocks

Add the Sin block

Let's add some blocks to the model canvas. Open the Simulink Library Browser by clicking

the Library Browser button in the toolstrip. You will use a sine wave to simulate the speed

input.

Locate the Sine Wave block and drag it from the Simulink Library Browser window to the

Simulink Editor window.

Add a Lookup Table and Gain

Next you need to convert the user's speed signal coming from the Sine Wave block into a

PWM signal between -1 and 1. To do this, use a lookup table, which uses interpolation

among known data points to determine an output value for an arbitrary input value. Locate

the 1-D Lookup Table block in Simulink > Lookup Tables and drag it into the Simulink

Editor window.

The Lookup Table will output PWM command values between -1 and 1. Ultimately, you will

communicate the magnitude of the duty cycle to the DC motor hardware using integers that

range from -100 to 100 for the M1 M2 DC Motors block or -255 to 255 for the M3 M4 DC

Motors block. To prepare for this scaling, you need a Gain block. A Gain block multiplies a

Simulink signal by a constant value. Add a Gain block from Simulink > Math Operations:

Add a Sink block

Now let's add a block to visualize the output of the lookup table. Examine the Simulink >

Sinks library.

Connect the blocks

Once you've added the blocks to the simulink window, arrange them linearly as shown in the

image below.

Now you need to connect the blocks using signals. Left click on the outport and drag it to the

import and when the signal line turns solid, you have connected the signal and you can stop

the click and drag.

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft

end

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                 % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                       % Turn on motor

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end
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45. Note that the function call saves the analysis data to motorResponse.mat every 

time the function is called. We can update the code to save to a filename of choice. 

 
46. This input is written into the save command. 

 
47. Depending on the motor used, we could give a specific name in the function call. 

 
48. The final task in this week is to try to setup a Simulink. Create the following in a 

blank Simulink canvas. 

Visualising Measured Speed VS. PWM Duty Cycle

Now you have some real speed measurements in your Workspace. Let's visualize them

against their corresponding PWM command values using the plot  command we learned

about earlier. Add the following section to your live script to plot and annotate the raw data:

%% 4. Graph raw data

plot(PWMcmdRaw,speedRaw)      % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')

Execute the section and examine the figure in the output column of the Live Editor:

Notice some interesting features of the speed-PWM relationship that you can deduct from

studying the graph. There is a "dead zone" around PWM=0, where there is zero rotational

speed for non-zero PWM commands. Furthermore, there may be some non-monotonic

portions of the curve, where the measured speed does not increase with increasing PWM

command. This typically happens around PWM = +/-1, but could also result from

experimental error.

Post-Processing Speed Measurements

Collecting this data will be relevant later when you want to model how a more complex

machine that uses several motors behaves. Later you will create a motor control system in

Simulink, in which a user will request a motor speed in rpm (revolutions per minute). The

system will calculate the required PWM command to run the motor at that speed and send it

to the Arduino board. To perform this operation correctly, the controller needs a one-to-one

mapping between motor speeds and PWM commands. This means that there can only be

one PWM command per speed, so you must remove repeated values and nonincreasing

values from the data. First you must identify which values of speedRaw  are not in increasing

order. Examine speedRaw in the Command Window:

  >> speedRaw

Locate the multiple zeros in the speed measurements and look for nonincreasing values.

It is not easy to see where the nonincreasing values are, so let's make a first-order difference.

Enter the following command:

>> diff(speedRaw)

This will output another vector showing the differences between pairs of values in the array.

To remove non-increasing values in speedRaw , you need to know the indices where

diff(speedRaw)  is non-positive. To do this, you can use relational operators to create a

logical condition. Enter the following logical expressions, and interpret the result:

>> pi > 3
>> pi >= 3
>> pi == 3
>> pi < 3
>> x = 1:5
>> x == 3
>> x < 3
>> y = x < 3

For the first half of the previous commands (all the ones related to pi), the operations will

produce a different result based on the level of truth of the statement.

For the second set of operations (the ones related to the variables x  and y  ), the results are

different, since x  is an array containing the numbers 1 to 5. Examine x  and y  in your

Workspace. The numeric vector x  is the same size as the logical index vector y . You can

use a logical index expression or variable to index into a variable of the same size. Try the

following commands:

>> x(y)
>> x(~y)
>> z = rand(1,5)
>> z(y)

Now let's get the logical indices and values of speedRaw  where it is strictly increasing. Enter

the following commands:

>> idx = diff(speedRaw) > 0
>> speedMono = speedRaw(idx);

How does the size of speedMono  compare to that of speedRaw ? They are different; think

about why this is the case. Note, to get help with built-in MATLAB functions like diff ,

rand , and tic , use the doc command to access the documentation. For example:

>> doc diff

The documentation for each function will show you the various ways the function can be

called, and examples for each syntax.

Now you have made a monotonic version of the speed measurements, but there are some

problems. First, how do you now align the PWM command values to the new speed vector if

they are different sizes? You can use the same logical index to isolate the corresponding PWM

values. Use the following command to filter the PWM values, and plot both the raw and

filtered values:

>> PWMcmdMono = PWMcmdRaw(idx);
>> plot(PWMcmdRaw,speedRaw,PWMcmdMono,speedMono)

To illustrate a second issue that arises when post-processing the information obtained from

the motor, enter the following commands:

>> speedMono == 0

 >> PWMcmdMono(speedMono == 0)

Due to the way we filtered out the non-monotonic points, a speed of zero is to be driven by a

non-zero PWM. Although commanding a small enough PWM value will result in zero speed

due to friction, it would waste power, especially if the system commands zero speed for a

long time. Therefore, you should change that value of PWMcmdMono  to 0 , which will have

the same result. Enter the following command:

>> PWMcmdMono(speedMono == 0) = 0;

Let's incorporate the post-processing into the live script. Add a new section before the

section labeled Graph raw data, and type the following code:

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0);             % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values
PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed
save motorResponse PWMcmdMono speedMono % save post-processed measurements

Now update the Graph raw data section to include both the raw data and post-processed

data. Add the following lines of code as follows:

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw,speedRaw)                            % raw speed measurements
hold on
plot(PWMcmdMono,speedMono)                          % non-monotonic measurements 
filtered out
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data','Location','northwest')

Finally, delete all device objects to release the Arduino Nano 33 IoT board to be used in other

processes. Add the following section at the end of your live script:

%% 6. Delete device objects

clear a dcm carrier enc

Saving and Rerunning Scripts

You now have a fully functional live script that automatically performs a series of

measurements, post-processes those measurements, saves the experimental data to disk,

and plots the results. You may want to repeat this analysis multiple times, for the same

motor or perhaps other DC motors. You can save your live script as a .mlx  file so that you

can run it again later or share it with other MATLAB users. Save your live script as

myMotorCharacterization.mlx . An .mlx  file contains not only your code and text

annotations, but also any numeric or graphical results that were displayed in the output

column. Thus, your live script is an active report of your analysis and results. Recall that you

can run your live script in its entirety using the Run button in the Live Editor window:

You can also run the live script directly in the Command Window using its name as the

command. Try running your live script:

>> myMotorCharacterization

Creating MATLAB Functions

Look at your Workspace. Which of the existing variables are useful to you? Which variables

are intermediate values from your live script that you no longer need?

You can compartmentalize parts of your MATLAB program into functions, so that the

intermediate calculations are hidden and you only need to manage inputs and outputs.

Looking at your live script, the first two sections are specific to this DC motor, encoder, and

test case ( PWMcmdRaw ). The following three sections (measure raw motor speed for each

PWM command, post-process and save data, and graph raw and post-processed data) can be

generalized for any DC motor, encoder, and test case. Let's create a MATLAB function for that

code. Start in the Live Editor window by clicking New > Live Function.

Next, you need to determine what the inputs and outputs to your function are. Section 3 of

your live script requires the test vector PWMcmdRaw , the DC motor object dcm , and the

encoder object enc .

The next line of code is an example of a possible function header. Place the inputs in

parentheses ( ( ) ) with the three variables listed above:

function z = Untitled(PWMcmdRaw,dcm,enc)

Now consider what variables you want to access from the motor characterization algorithm.

The only meaningful variables created in these sections are PWMcmdMono  and speedMono .

In the function header, list these two variables as outputs in square brackets ( [ ] ).

function [PWMcmdMono,speedMono] = Untitled(PWMcmdRaw,dcm,enc)

Finally, let's name the function so that we know how to call it in MATLAB code. Replace the

function name with myMotorFunction:

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

Now let's fill in the algorithm. Cut and paste sections 3, 4, and 5 from your live script to your

live function, between the function header and the end keyword.

4. Post-process and save data
idx = diff(speedRaw) > 0;               % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values

PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed

save motorResponse,'PWMcmdMono','speedMono' % save post-processed measurements

5. Graph raw and post-processed data
plot(PWMcmdRaw,speedRaw)   % raw speed measurements
hold on
plot(PWMcmdMono,speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data')

Save the file as myMotorFunction.mlx. Now you have a working MATLAB function that you

can call from any MATLAB code environment. Let's try calling it from your live script. In the

empty section of your live script, enter the call to your function:

1. Create test data
maxPWM = 1.00;                         % maximum duty cycle
incrPWM = 0.05;                        % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc                % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');           % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);        % Connect the encoder of 'M1' at the 
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono,speedMono] = characterizeMotorFcn(PWMcmdRaw,dcm,enc);

6. Delete device objects
clear a carrier dcm enc

Now run your live script and ensure it still works as before.

To further understand the benefits of using MATLAB functions, clear your Workspace in the

Command Window, and run your live script again.

>> clear

>> myMotorCharacterization

Examine your Workspace. The list of variables should be more concise now. There is one

more thing you may want to generalize in this function, and that is the name of the MAT-File

that we use in the save command. As of now, the analysis data gets saved to the same MAT-

File, motorResponse.mat , every time you call the function. This is not very useful if you

want to characterize multiple DC motors. Let's add a new input to the function for the file

name. In the live function, add the new input as shown below:

function[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,filename)

Now let's use the new input in the save command. Rewrite the save command as follows:

save(filename,'PWMcmdMono','speedMono')% save post-processed measurements

Finally, we need to modify the function call, since the function header has changed. In the live

script, change the function call as follows:

[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,'motorResponse');

Now you can save the analysis data to any MAT-file you want each time you call

myMotorFunction . Try calling your live script once more:

>> myMotorCharacterization

3.7 Designing a Motor Control System
In this section, you will learn:

CONTROL SYSTEM FLOW CHART

In this diagram, the blocks represent some functionality or process and the arrows represent

data flow. The directionality of the arrows indicate which process generates the data and

where the data is used. Simulink enables you to create your algorithm as a block diagram and

execute it over an interval of time.

Create the Blocks

Add the Sin block

Let's add some blocks to the model canvas. Open the Simulink Library Browser by clicking

the Library Browser button in the toolstrip. You will use a sine wave to simulate the speed

input.

Locate the Sine Wave block and drag it from the Simulink Library Browser window to the

Simulink Editor window.

Add a Lookup Table and Gain

Next you need to convert the user's speed signal coming from the Sine Wave block into a

PWM signal between -1 and 1. To do this, use a lookup table, which uses interpolation

among known data points to determine an output value for an arbitrary input value. Locate

the 1-D Lookup Table block in Simulink > Lookup Tables and drag it into the Simulink

Editor window.

The Lookup Table will output PWM command values between -1 and 1. Ultimately, you will

communicate the magnitude of the duty cycle to the DC motor hardware using integers that

range from -100 to 100 for the M1 M2 DC Motors block or -255 to 255 for the M3 M4 DC

Motors block. To prepare for this scaling, you need a Gain block. A Gain block multiplies a

Simulink signal by a constant value. Add a Gain block from Simulink > Math Operations:

Add a Sink block

Now let's add a block to visualize the output of the lookup table. Examine the Simulink >

Sinks library.

Connect the blocks

Once you've added the blocks to the simulink window, arrange them linearly as shown in the

image below.

Now you need to connect the blocks using signals. Left click on the outport and drag it to the

import and when the signal line turns solid, you have connected the signal and you can stop

the click and drag.

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft

end

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                 % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                       % Turn on motor

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end
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Visualising Measured Speed VS. PWM Duty Cycle

Now you have some real speed measurements in your Workspace. Let's visualize them

against their corresponding PWM command values using the plot  command we learned

about earlier. Add the following section to your live script to plot and annotate the raw data:

%% 4. Graph raw data

plot(PWMcmdRaw,speedRaw)      % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')

Execute the section and examine the figure in the output column of the Live Editor:

Notice some interesting features of the speed-PWM relationship that you can deduct from

studying the graph. There is a "dead zone" around PWM=0, where there is zero rotational

speed for non-zero PWM commands. Furthermore, there may be some non-monotonic

portions of the curve, where the measured speed does not increase with increasing PWM

command. This typically happens around PWM = +/-1, but could also result from

experimental error.

Post-Processing Speed Measurements

Collecting this data will be relevant later when you want to model how a more complex

machine that uses several motors behaves. Later you will create a motor control system in

Simulink, in which a user will request a motor speed in rpm (revolutions per minute). The

system will calculate the required PWM command to run the motor at that speed and send it

to the Arduino board. To perform this operation correctly, the controller needs a one-to-one

mapping between motor speeds and PWM commands. This means that there can only be

one PWM command per speed, so you must remove repeated values and nonincreasing

values from the data. First you must identify which values of speedRaw  are not in increasing

order. Examine speedRaw in the Command Window:

  >> speedRaw

Locate the multiple zeros in the speed measurements and look for nonincreasing values.

It is not easy to see where the nonincreasing values are, so let's make a first-order difference.

Enter the following command:

>> diff(speedRaw)

This will output another vector showing the differences between pairs of values in the array.

To remove non-increasing values in speedRaw , you need to know the indices where

diff(speedRaw)  is non-positive. To do this, you can use relational operators to create a

logical condition. Enter the following logical expressions, and interpret the result:

>> pi > 3
>> pi >= 3
>> pi == 3
>> pi < 3
>> x = 1:5
>> x == 3
>> x < 3
>> y = x < 3

For the first half of the previous commands (all the ones related to pi), the operations will

produce a different result based on the level of truth of the statement.

For the second set of operations (the ones related to the variables x  and y  ), the results are

different, since x  is an array containing the numbers 1 to 5. Examine x  and y  in your

Workspace. The numeric vector x  is the same size as the logical index vector y . You can

use a logical index expression or variable to index into a variable of the same size. Try the

following commands:

>> x(y)
>> x(~y)
>> z = rand(1,5)
>> z(y)

Now let's get the logical indices and values of speedRaw  where it is strictly increasing. Enter

the following commands:

>> idx = diff(speedRaw) > 0
>> speedMono = speedRaw(idx);

How does the size of speedMono  compare to that of speedRaw ? They are different; think

about why this is the case. Note, to get help with built-in MATLAB functions like diff ,

rand , and tic , use the doc command to access the documentation. For example:

>> doc diff

The documentation for each function will show you the various ways the function can be

called, and examples for each syntax.

Now you have made a monotonic version of the speed measurements, but there are some

problems. First, how do you now align the PWM command values to the new speed vector if

they are different sizes? You can use the same logical index to isolate the corresponding PWM

values. Use the following command to filter the PWM values, and plot both the raw and

filtered values:

>> PWMcmdMono = PWMcmdRaw(idx);
>> plot(PWMcmdRaw,speedRaw,PWMcmdMono,speedMono)

To illustrate a second issue that arises when post-processing the information obtained from

the motor, enter the following commands:

>> speedMono == 0

 >> PWMcmdMono(speedMono == 0)

Due to the way we filtered out the non-monotonic points, a speed of zero is to be driven by a

non-zero PWM. Although commanding a small enough PWM value will result in zero speed

due to friction, it would waste power, especially if the system commands zero speed for a

long time. Therefore, you should change that value of PWMcmdMono  to 0 , which will have

the same result. Enter the following command:

>> PWMcmdMono(speedMono == 0) = 0;

Let's incorporate the post-processing into the live script. Add a new section before the

section labeled Graph raw data, and type the following code:

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0);             % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values
PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed
save motorResponse PWMcmdMono speedMono % save post-processed measurements

Now update the Graph raw data section to include both the raw data and post-processed

data. Add the following lines of code as follows:

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw,speedRaw)                            % raw speed measurements
hold on
plot(PWMcmdMono,speedMono)                          % non-monotonic measurements 
filtered out
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data','Location','northwest')

Finally, delete all device objects to release the Arduino Nano 33 IoT board to be used in other

processes. Add the following section at the end of your live script:

%% 6. Delete device objects

clear a dcm carrier enc

Saving and Rerunning Scripts

You now have a fully functional live script that automatically performs a series of

measurements, post-processes those measurements, saves the experimental data to disk,

and plots the results. You may want to repeat this analysis multiple times, for the same

motor or perhaps other DC motors. You can save your live script as a .mlx  file so that you

can run it again later or share it with other MATLAB users. Save your live script as

myMotorCharacterization.mlx . An .mlx  file contains not only your code and text

annotations, but also any numeric or graphical results that were displayed in the output

column. Thus, your live script is an active report of your analysis and results. Recall that you

can run your live script in its entirety using the Run button in the Live Editor window:

You can also run the live script directly in the Command Window using its name as the

command. Try running your live script:

>> myMotorCharacterization

Creating MATLAB Functions

Look at your Workspace. Which of the existing variables are useful to you? Which variables

are intermediate values from your live script that you no longer need?

You can compartmentalize parts of your MATLAB program into functions, so that the

intermediate calculations are hidden and you only need to manage inputs and outputs.

Looking at your live script, the first two sections are specific to this DC motor, encoder, and

test case ( PWMcmdRaw ). The following three sections (measure raw motor speed for each

PWM command, post-process and save data, and graph raw and post-processed data) can be

generalized for any DC motor, encoder, and test case. Let's create a MATLAB function for that

code. Start in the Live Editor window by clicking New > Live Function.

Next, you need to determine what the inputs and outputs to your function are. Section 3 of

your live script requires the test vector PWMcmdRaw , the DC motor object dcm , and the

encoder object enc .

The next line of code is an example of a possible function header. Place the inputs in

parentheses ( ( ) ) with the three variables listed above:

function z = Untitled(PWMcmdRaw,dcm,enc)

Now consider what variables you want to access from the motor characterization algorithm.

The only meaningful variables created in these sections are PWMcmdMono  and speedMono .

In the function header, list these two variables as outputs in square brackets ( [ ] ).

function [PWMcmdMono,speedMono] = Untitled(PWMcmdRaw,dcm,enc)

Finally, let's name the function so that we know how to call it in MATLAB code. Replace the

function name with myMotorFunction:

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

Now let's fill in the algorithm. Cut and paste sections 3, 4, and 5 from your live script to your

live function, between the function header and the end keyword.

4. Post-process and save data
idx = diff(speedRaw) > 0;               % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values

PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed

save motorResponse,'PWMcmdMono','speedMono' % save post-processed measurements

5. Graph raw and post-processed data
plot(PWMcmdRaw,speedRaw)   % raw speed measurements
hold on
plot(PWMcmdMono,speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data')

Save the file as myMotorFunction.mlx. Now you have a working MATLAB function that you

can call from any MATLAB code environment. Let's try calling it from your live script. In the

empty section of your live script, enter the call to your function:

1. Create test data
maxPWM = 1.00;                         % maximum duty cycle
incrPWM = 0.05;                        % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc                % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');           % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);        % Connect the encoder of 'M1' at the 
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono,speedMono] = characterizeMotorFcn(PWMcmdRaw,dcm,enc);

6. Delete device objects
clear a carrier dcm enc

Now run your live script and ensure it still works as before.

To further understand the benefits of using MATLAB functions, clear your Workspace in the

Command Window, and run your live script again.

>> clear

>> myMotorCharacterization

Examine your Workspace. The list of variables should be more concise now. There is one

more thing you may want to generalize in this function, and that is the name of the MAT-File

that we use in the save command. As of now, the analysis data gets saved to the same MAT-

File, motorResponse.mat , every time you call the function. This is not very useful if you

want to characterize multiple DC motors. Let's add a new input to the function for the file

name. In the live function, add the new input as shown below:

function[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,filename)

Now let's use the new input in the save command. Rewrite the save command as follows:

save(filename,'PWMcmdMono','speedMono')% save post-processed measurements

Finally, we need to modify the function call, since the function header has changed. In the live

script, change the function call as follows:

[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,'motorResponse');

Now you can save the analysis data to any MAT-file you want each time you call

myMotorFunction . Try calling your live script once more:

>> myMotorCharacterization

3.7 Designing a Motor Control System
In this section, you will learn:

CONTROL SYSTEM FLOW CHART

In this diagram, the blocks represent some functionality or process and the arrows represent

data flow. The directionality of the arrows indicate which process generates the data and

where the data is used. Simulink enables you to create your algorithm as a block diagram and

execute it over an interval of time.

Create the Blocks

Add the Sin block

Let's add some blocks to the model canvas. Open the Simulink Library Browser by clicking

the Library Browser button in the toolstrip. You will use a sine wave to simulate the speed

input.

Locate the Sine Wave block and drag it from the Simulink Library Browser window to the

Simulink Editor window.

Add a Lookup Table and Gain

Next you need to convert the user's speed signal coming from the Sine Wave block into a

PWM signal between -1 and 1. To do this, use a lookup table, which uses interpolation

among known data points to determine an output value for an arbitrary input value. Locate

the 1-D Lookup Table block in Simulink > Lookup Tables and drag it into the Simulink

Editor window.

The Lookup Table will output PWM command values between -1 and 1. Ultimately, you will

communicate the magnitude of the duty cycle to the DC motor hardware using integers that

range from -100 to 100 for the M1 M2 DC Motors block or -255 to 255 for the M3 M4 DC

Motors block. To prepare for this scaling, you need a Gain block. A Gain block multiplies a

Simulink signal by a constant value. Add a Gain block from Simulink > Math Operations:

Add a Sink block

Now let's add a block to visualize the output of the lookup table. Examine the Simulink >

Sinks library.

Connect the blocks

Once you've added the blocks to the simulink window, arrange them linearly as shown in the

image below.

Now you need to connect the blocks using signals. Left click on the outport and drag it to the

import and when the signal line turns solid, you have connected the signal and you can stop

the click and drag.

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft

end

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                 % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                       % Turn on motor

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end
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How to determine the necessary PWM command to achieve that speed

Use simulink to model and simulate this system

Running the simulink model directly on the Arduino Nano 33 IoT

Visualising Measured Speed VS. PWM Duty Cycle

Now you have some real speed measurements in your Workspace. Let's visualize them

against their corresponding PWM command values using the plot  command we learned

about earlier. Add the following section to your live script to plot and annotate the raw data:

%% 4. Graph raw data

plot(PWMcmdRaw,speedRaw)      % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')

Execute the section and examine the figure in the output column of the Live Editor:

Notice some interesting features of the speed-PWM relationship that you can deduct from

studying the graph. There is a "dead zone" around PWM=0, where there is zero rotational

speed for non-zero PWM commands. Furthermore, there may be some non-monotonic

portions of the curve, where the measured speed does not increase with increasing PWM

command. This typically happens around PWM = +/-1, but could also result from

experimental error.

Post-Processing Speed Measurements

Collecting this data will be relevant later when you want to model how a more complex

machine that uses several motors behaves. Later you will create a motor control system in

Simulink, in which a user will request a motor speed in rpm (revolutions per minute). The

system will calculate the required PWM command to run the motor at that speed and send it

to the Arduino board. To perform this operation correctly, the controller needs a one-to-one

mapping between motor speeds and PWM commands. This means that there can only be

one PWM command per speed, so you must remove repeated values and nonincreasing

values from the data. First you must identify which values of speedRaw  are not in increasing

order. Examine speedRaw in the Command Window:

  >> speedRaw

Locate the multiple zeros in the speed measurements and look for nonincreasing values.

It is not easy to see where the nonincreasing values are, so let's make a first-order difference.

Enter the following command:

>> diff(speedRaw)

This will output another vector showing the differences between pairs of values in the array.

To remove non-increasing values in speedRaw , you need to know the indices where

diff(speedRaw)  is non-positive. To do this, you can use relational operators to create a

logical condition. Enter the following logical expressions, and interpret the result:

>> pi > 3
>> pi >= 3
>> pi == 3
>> pi < 3
>> x = 1:5
>> x == 3
>> x < 3
>> y = x < 3

For the first half of the previous commands (all the ones related to pi), the operations will

produce a different result based on the level of truth of the statement.

For the second set of operations (the ones related to the variables x  and y  ), the results are

different, since x  is an array containing the numbers 1 to 5. Examine x  and y  in your

Workspace. The numeric vector x  is the same size as the logical index vector y . You can

use a logical index expression or variable to index into a variable of the same size. Try the

following commands:

>> x(y)
>> x(~y)
>> z = rand(1,5)
>> z(y)

Now let's get the logical indices and values of speedRaw  where it is strictly increasing. Enter

the following commands:

>> idx = diff(speedRaw) > 0
>> speedMono = speedRaw(idx);

How does the size of speedMono  compare to that of speedRaw ? They are different; think

about why this is the case. Note, to get help with built-in MATLAB functions like diff ,

rand , and tic , use the doc command to access the documentation. For example:

>> doc diff

The documentation for each function will show you the various ways the function can be

called, and examples for each syntax.

Now you have made a monotonic version of the speed measurements, but there are some

problems. First, how do you now align the PWM command values to the new speed vector if

they are different sizes? You can use the same logical index to isolate the corresponding PWM

values. Use the following command to filter the PWM values, and plot both the raw and

filtered values:

>> PWMcmdMono = PWMcmdRaw(idx);
>> plot(PWMcmdRaw,speedRaw,PWMcmdMono,speedMono)

To illustrate a second issue that arises when post-processing the information obtained from

the motor, enter the following commands:

>> speedMono == 0

 >> PWMcmdMono(speedMono == 0)

Due to the way we filtered out the non-monotonic points, a speed of zero is to be driven by a

non-zero PWM. Although commanding a small enough PWM value will result in zero speed

due to friction, it would waste power, especially if the system commands zero speed for a

long time. Therefore, you should change that value of PWMcmdMono  to 0 , which will have

the same result. Enter the following command:

>> PWMcmdMono(speedMono == 0) = 0;

Let's incorporate the post-processing into the live script. Add a new section before the

section labeled Graph raw data, and type the following code:

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0);             % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values
PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed
save motorResponse PWMcmdMono speedMono % save post-processed measurements

Now update the Graph raw data section to include both the raw data and post-processed

data. Add the following lines of code as follows:

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw,speedRaw)                            % raw speed measurements
hold on
plot(PWMcmdMono,speedMono)                          % non-monotonic measurements 
filtered out
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data','Location','northwest')

Finally, delete all device objects to release the Arduino Nano 33 IoT board to be used in other

processes. Add the following section at the end of your live script:

%% 6. Delete device objects

clear a dcm carrier enc

Saving and Rerunning Scripts

You now have a fully functional live script that automatically performs a series of

measurements, post-processes those measurements, saves the experimental data to disk,

and plots the results. You may want to repeat this analysis multiple times, for the same

motor or perhaps other DC motors. You can save your live script as a .mlx  file so that you

can run it again later or share it with other MATLAB users. Save your live script as

myMotorCharacterization.mlx . An .mlx  file contains not only your code and text

annotations, but also any numeric or graphical results that were displayed in the output

column. Thus, your live script is an active report of your analysis and results. Recall that you

can run your live script in its entirety using the Run button in the Live Editor window:

You can also run the live script directly in the Command Window using its name as the

command. Try running your live script:

>> myMotorCharacterization

Creating MATLAB Functions

Look at your Workspace. Which of the existing variables are useful to you? Which variables

are intermediate values from your live script that you no longer need?

You can compartmentalize parts of your MATLAB program into functions, so that the

intermediate calculations are hidden and you only need to manage inputs and outputs.

Looking at your live script, the first two sections are specific to this DC motor, encoder, and

test case ( PWMcmdRaw ). The following three sections (measure raw motor speed for each

PWM command, post-process and save data, and graph raw and post-processed data) can be

generalized for any DC motor, encoder, and test case. Let's create a MATLAB function for that

code. Start in the Live Editor window by clicking New > Live Function.

Next, you need to determine what the inputs and outputs to your function are. Section 3 of

your live script requires the test vector PWMcmdRaw , the DC motor object dcm , and the

encoder object enc .

The next line of code is an example of a possible function header. Place the inputs in

parentheses ( ( ) ) with the three variables listed above:

function z = Untitled(PWMcmdRaw,dcm,enc)

Now consider what variables you want to access from the motor characterization algorithm.

The only meaningful variables created in these sections are PWMcmdMono  and speedMono .

In the function header, list these two variables as outputs in square brackets ( [ ] ).

function [PWMcmdMono,speedMono] = Untitled(PWMcmdRaw,dcm,enc)

Finally, let's name the function so that we know how to call it in MATLAB code. Replace the

function name with myMotorFunction:

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

Now let's fill in the algorithm. Cut and paste sections 3, 4, and 5 from your live script to your

live function, between the function header and the end keyword.

4. Post-process and save data
idx = diff(speedRaw) > 0;               % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values

PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed

save motorResponse,'PWMcmdMono','speedMono' % save post-processed measurements

5. Graph raw and post-processed data
plot(PWMcmdRaw,speedRaw)   % raw speed measurements
hold on
plot(PWMcmdMono,speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data')

Save the file as myMotorFunction.mlx. Now you have a working MATLAB function that you

can call from any MATLAB code environment. Let's try calling it from your live script. In the

empty section of your live script, enter the call to your function:

1. Create test data
maxPWM = 1.00;                         % maximum duty cycle
incrPWM = 0.05;                        % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc                % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');           % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);        % Connect the encoder of 'M1' at the 
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono,speedMono] = characterizeMotorFcn(PWMcmdRaw,dcm,enc);

6. Delete device objects
clear a carrier dcm enc

Now run your live script and ensure it still works as before.

To further understand the benefits of using MATLAB functions, clear your Workspace in the

Command Window, and run your live script again.

>> clear

>> myMotorCharacterization

Examine your Workspace. The list of variables should be more concise now. There is one

more thing you may want to generalize in this function, and that is the name of the MAT-File

that we use in the save command. As of now, the analysis data gets saved to the same MAT-

File, motorResponse.mat , every time you call the function. This is not very useful if you

want to characterize multiple DC motors. Let's add a new input to the function for the file

name. In the live function, add the new input as shown below:

function[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,filename)

Now let's use the new input in the save command. Rewrite the save command as follows:

save(filename,'PWMcmdMono','speedMono')% save post-processed measurements

Finally, we need to modify the function call, since the function header has changed. In the live

script, change the function call as follows:

[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,'motorResponse');

Now you can save the analysis data to any MAT-file you want each time you call

myMotorFunction . Try calling your live script once more:

>> myMotorCharacterization

3.7 Designing a Motor Control System
In this section, you will learn:

CONTROL SYSTEM FLOW CHART

In this diagram, the blocks represent some functionality or process and the arrows represent

data flow. The directionality of the arrows indicate which process generates the data and

where the data is used. Simulink enables you to create your algorithm as a block diagram and

execute it over an interval of time.

Create the Blocks

Add the Sin block

Let's add some blocks to the model canvas. Open the Simulink Library Browser by clicking

the Library Browser button in the toolstrip. You will use a sine wave to simulate the speed

input.

Locate the Sine Wave block and drag it from the Simulink Library Browser window to the

Simulink Editor window.

Add a Lookup Table and Gain

Next you need to convert the user's speed signal coming from the Sine Wave block into a

PWM signal between -1 and 1. To do this, use a lookup table, which uses interpolation

among known data points to determine an output value for an arbitrary input value. Locate

the 1-D Lookup Table block in Simulink > Lookup Tables and drag it into the Simulink

Editor window.

The Lookup Table will output PWM command values between -1 and 1. Ultimately, you will

communicate the magnitude of the duty cycle to the DC motor hardware using integers that

range from -100 to 100 for the M1 M2 DC Motors block or -255 to 255 for the M3 M4 DC

Motors block. To prepare for this scaling, you need a Gain block. A Gain block multiplies a

Simulink signal by a constant value. Add a Gain block from Simulink > Math Operations:

Add a Sink block

Now let's add a block to visualize the output of the lookup table. Examine the Simulink >

Sinks library.

Connect the blocks

Once you've added the blocks to the simulink window, arrange them linearly as shown in the

image below.

Now you need to connect the blocks using signals. Left click on the outport and drag it to the

import and when the signal line turns solid, you have connected the signal and you can stop

the click and drag.

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft

end

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                 % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                       % Turn on motor

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end
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Visualising Measured Speed VS. PWM Duty Cycle

Now you have some real speed measurements in your Workspace. Let's visualize them

against their corresponding PWM command values using the plot  command we learned

about earlier. Add the following section to your live script to plot and annotate the raw data:

%% 4. Graph raw data

plot(PWMcmdRaw,speedRaw)      % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')

Execute the section and examine the figure in the output column of the Live Editor:

Notice some interesting features of the speed-PWM relationship that you can deduct from

studying the graph. There is a "dead zone" around PWM=0, where there is zero rotational

speed for non-zero PWM commands. Furthermore, there may be some non-monotonic

portions of the curve, where the measured speed does not increase with increasing PWM

command. This typically happens around PWM = +/-1, but could also result from

experimental error.

Post-Processing Speed Measurements

Collecting this data will be relevant later when you want to model how a more complex

machine that uses several motors behaves. Later you will create a motor control system in

Simulink, in which a user will request a motor speed in rpm (revolutions per minute). The

system will calculate the required PWM command to run the motor at that speed and send it

to the Arduino board. To perform this operation correctly, the controller needs a one-to-one

mapping between motor speeds and PWM commands. This means that there can only be

one PWM command per speed, so you must remove repeated values and nonincreasing

values from the data. First you must identify which values of speedRaw  are not in increasing

order. Examine speedRaw in the Command Window:

  >> speedRaw

Locate the multiple zeros in the speed measurements and look for nonincreasing values.

It is not easy to see where the nonincreasing values are, so let's make a first-order difference.

Enter the following command:

>> diff(speedRaw)

This will output another vector showing the differences between pairs of values in the array.

To remove non-increasing values in speedRaw , you need to know the indices where

diff(speedRaw)  is non-positive. To do this, you can use relational operators to create a

logical condition. Enter the following logical expressions, and interpret the result:

>> pi > 3
>> pi >= 3
>> pi == 3
>> pi < 3
>> x = 1:5
>> x == 3
>> x < 3
>> y = x < 3

For the first half of the previous commands (all the ones related to pi), the operations will

produce a different result based on the level of truth of the statement.

For the second set of operations (the ones related to the variables x  and y  ), the results are

different, since x  is an array containing the numbers 1 to 5. Examine x  and y  in your

Workspace. The numeric vector x  is the same size as the logical index vector y . You can

use a logical index expression or variable to index into a variable of the same size. Try the

following commands:

>> x(y)
>> x(~y)
>> z = rand(1,5)
>> z(y)

Now let's get the logical indices and values of speedRaw  where it is strictly increasing. Enter

the following commands:

>> idx = diff(speedRaw) > 0
>> speedMono = speedRaw(idx);

How does the size of speedMono  compare to that of speedRaw ? They are different; think

about why this is the case. Note, to get help with built-in MATLAB functions like diff ,

rand , and tic , use the doc command to access the documentation. For example:

>> doc diff

The documentation for each function will show you the various ways the function can be

called, and examples for each syntax.

Now you have made a monotonic version of the speed measurements, but there are some

problems. First, how do you now align the PWM command values to the new speed vector if

they are different sizes? You can use the same logical index to isolate the corresponding PWM

values. Use the following command to filter the PWM values, and plot both the raw and

filtered values:

>> PWMcmdMono = PWMcmdRaw(idx);
>> plot(PWMcmdRaw,speedRaw,PWMcmdMono,speedMono)

To illustrate a second issue that arises when post-processing the information obtained from

the motor, enter the following commands:

>> speedMono == 0

 >> PWMcmdMono(speedMono == 0)

Due to the way we filtered out the non-monotonic points, a speed of zero is to be driven by a

non-zero PWM. Although commanding a small enough PWM value will result in zero speed

due to friction, it would waste power, especially if the system commands zero speed for a

long time. Therefore, you should change that value of PWMcmdMono  to 0 , which will have

the same result. Enter the following command:

>> PWMcmdMono(speedMono == 0) = 0;

Let's incorporate the post-processing into the live script. Add a new section before the

section labeled Graph raw data, and type the following code:

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0);             % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values
PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed
save motorResponse PWMcmdMono speedMono % save post-processed measurements

Now update the Graph raw data section to include both the raw data and post-processed

data. Add the following lines of code as follows:

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw,speedRaw)                            % raw speed measurements
hold on
plot(PWMcmdMono,speedMono)                          % non-monotonic measurements 
filtered out
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data','Location','northwest')

Finally, delete all device objects to release the Arduino Nano 33 IoT board to be used in other

processes. Add the following section at the end of your live script:

%% 6. Delete device objects

clear a dcm carrier enc

Saving and Rerunning Scripts

You now have a fully functional live script that automatically performs a series of

measurements, post-processes those measurements, saves the experimental data to disk,

and plots the results. You may want to repeat this analysis multiple times, for the same

motor or perhaps other DC motors. You can save your live script as a .mlx  file so that you

can run it again later or share it with other MATLAB users. Save your live script as

myMotorCharacterization.mlx . An .mlx  file contains not only your code and text

annotations, but also any numeric or graphical results that were displayed in the output

column. Thus, your live script is an active report of your analysis and results. Recall that you

can run your live script in its entirety using the Run button in the Live Editor window:

You can also run the live script directly in the Command Window using its name as the

command. Try running your live script:

>> myMotorCharacterization

Creating MATLAB Functions

Look at your Workspace. Which of the existing variables are useful to you? Which variables

are intermediate values from your live script that you no longer need?

You can compartmentalize parts of your MATLAB program into functions, so that the

intermediate calculations are hidden and you only need to manage inputs and outputs.

Looking at your live script, the first two sections are specific to this DC motor, encoder, and

test case ( PWMcmdRaw ). The following three sections (measure raw motor speed for each

PWM command, post-process and save data, and graph raw and post-processed data) can be

generalized for any DC motor, encoder, and test case. Let's create a MATLAB function for that

code. Start in the Live Editor window by clicking New > Live Function.

Next, you need to determine what the inputs and outputs to your function are. Section 3 of

your live script requires the test vector PWMcmdRaw , the DC motor object dcm , and the

encoder object enc .

The next line of code is an example of a possible function header. Place the inputs in

parentheses ( ( ) ) with the three variables listed above:

function z = Untitled(PWMcmdRaw,dcm,enc)

Now consider what variables you want to access from the motor characterization algorithm.

The only meaningful variables created in these sections are PWMcmdMono  and speedMono .

In the function header, list these two variables as outputs in square brackets ( [ ] ).

function [PWMcmdMono,speedMono] = Untitled(PWMcmdRaw,dcm,enc)

Finally, let's name the function so that we know how to call it in MATLAB code. Replace the

function name with myMotorFunction:

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

Now let's fill in the algorithm. Cut and paste sections 3, 4, and 5 from your live script to your

live function, between the function header and the end keyword.

4. Post-process and save data
idx = diff(speedRaw) > 0;               % find indices where vector is increasing
speedMono = speedRaw(idx);              % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx);            % Keep only corresponding PWM values

PWMcmdMono(speedMono == 0) = 0;         % enforce zero power for zero speed

save motorResponse,'PWMcmdMono','speedMono' % save post-processed measurements

5. Graph raw and post-processed data
plot(PWMcmdRaw,speedRaw)   % raw speed measurements
hold on
plot(PWMcmdMono,speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')
ylabel('Measured Speed (rpm)')
legend('Raw Data','Monotonic Data')

Save the file as myMotorFunction.mlx. Now you have a working MATLAB function that you

can call from any MATLAB code environment. Let's try calling it from your live script. In the

empty section of your live script, enter the call to your function:

1. Create test data
maxPWM = 1.00;                         % maximum duty cycle
incrPWM = 0.05;                        % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc                % Delete existing device objects

a = arduino;
carrier = motorCarrier(a);
dcm = dcmotor(carrier,'M1');           % Connect a DC motor at 'M1' port on the 
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1);        % Connect the encoder of 'M1' at the 
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono,speedMono] = characterizeMotorFcn(PWMcmdRaw,dcm,enc);

6. Delete device objects
clear a carrier dcm enc

Now run your live script and ensure it still works as before.

To further understand the benefits of using MATLAB functions, clear your Workspace in the

Command Window, and run your live script again.

>> clear

>> myMotorCharacterization

Examine your Workspace. The list of variables should be more concise now. There is one

more thing you may want to generalize in this function, and that is the name of the MAT-File

that we use in the save command. As of now, the analysis data gets saved to the same MAT-

File, motorResponse.mat , every time you call the function. This is not very useful if you

want to characterize multiple DC motors. Let's add a new input to the function for the file

name. In the live function, add the new input as shown below:

function[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,filename)

Now let's use the new input in the save command. Rewrite the save command as follows:

save(filename,'PWMcmdMono','speedMono')% save post-processed measurements

Finally, we need to modify the function call, since the function header has changed. In the live

script, change the function call as follows:

[PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc,'motorResponse');

Now you can save the analysis data to any MAT-file you want each time you call

myMotorFunction . Try calling your live script once more:

>> myMotorCharacterization

3.7 Designing a Motor Control System
In this section, you will learn:

CONTROL SYSTEM FLOW CHART

In this diagram, the blocks represent some functionality or process and the arrows represent

data flow. The directionality of the arrows indicate which process generates the data and

where the data is used. Simulink enables you to create your algorithm as a block diagram and

execute it over an interval of time.

Create the Blocks

Add the Sin block

Let's add some blocks to the model canvas. Open the Simulink Library Browser by clicking

the Library Browser button in the toolstrip. You will use a sine wave to simulate the speed

input.

Locate the Sine Wave block and drag it from the Simulink Library Browser window to the

Simulink Editor window.

Add a Lookup Table and Gain

Next you need to convert the user's speed signal coming from the Sine Wave block into a

PWM signal between -1 and 1. To do this, use a lookup table, which uses interpolation

among known data points to determine an output value for an arbitrary input value. Locate

the 1-D Lookup Table block in Simulink > Lookup Tables and drag it into the Simulink

Editor window.

The Lookup Table will output PWM command values between -1 and 1. Ultimately, you will

communicate the magnitude of the duty cycle to the DC motor hardware using integers that

range from -100 to 100 for the M1 M2 DC Motors block or -255 to 255 for the M3 M4 DC

Motors block. To prepare for this scaling, you need a Gain block. A Gain block multiplies a

Simulink signal by a constant value. Add a Gain block from Simulink > Math Operations:

Add a Sink block

Now let's add a block to visualize the output of the lookup table. Examine the Simulink >

Sinks library.

Connect the blocks

Once you've added the blocks to the simulink window, arrange them linearly as shown in the

image below.

Now you need to connect the blocks using signals. Left click on the outport and drag it to the

import and when the signal line turns solid, you have connected the signal and you can stop

the click and drag.

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft

end

function [PWMcmdMono,speedMono] = myMotorFunction(PWMcmdRaw,dcm,enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw));               % Preallocate vector for speed 
measurements

dcm.Speed = 0;
gearRatio = 100;                                 % As per the motor spec sheet, 
gear ratio equals 100:1

start(dcm)                                       % Turn on motor

for ii = 1:length(PWMcmdRaw)

    dcm.Speed = PWMcmdRaw(ii);
    pause(1)                                    % Wait for steady state

    speedRaw(ii) = readSpeed(enc)/gearRatio;    % read motor speed in rpm of the 
output shaft
end

Design a motor control system that takes the users desired speed as input

How to determine the necessary PWM command to achieve that speed

Use simulink to model and simulate this system

Running the simulink model directly on the Arduino Nano 33 IoT



 

49. The Sine wave has output which is converted to a signal between -1 and 1 in a 
Lookup Table. The M1, M2 motors intake integer signals from -100 to 100 and 
the M3, M4 motors take -255 to 255. This is the purpose of the Gain block. The 
scope sink allows us to monitor the signal.  

 
50. Configure the Sine block to have Amplitude 300, Bias 0, Frequency (rad/sec) 0.2, 

Phase (rad) 0 and Sample Time 0. 
51. Have the Gain at 100, with Element-wise (K.*u) multiplication. 
52. Open the Configuration Parameters Window by clicking on the Model Settings 

Gear Icon in Modeling. 
53. Make sure the Hardware Implementation is set to “Arduino Nano 33 IoT” and the 

external mode is “Serial”. 

Configure the Blocks

Now let's configure the blocks to perform your specific algorithm. The Sine Wave block

needs to generate speed values in counts per second. Examine the range of speeds that you

measured for the motor; to do this, lets go to the MATLAB command line and run the

command

>> arduinosetup

Then, configure the Arduino Nano 33 IoT as in "Configuring Arduino Libraries" and run the

command

>> characterizeMotorScript

This characterizes the motor response.

Now let's configure the blocks to perform your specific algorithm. The Sine Wave block

needs to generate speed values in counts per second. Examine the range of speeds that you

measured for the motor; to do this, look into the data files you generated in the MATLAB

section of this chapter by issuing the following commands in the command window:

>> load motorResponse
>> min(speedMono)
>> max(speedMono)

Configure the Sin Block

Double-click the Sine Wave block to open its block parameter dialog. Configure the sine

wave to have an amplitude of 300 and a frequency of 0.2, to cover the range of measured

speeds. Then click OK:

Note: We obtained the value of 300 empirically by looking at the max speed obtained

from the motor characterisation process. You can modify this value based on your

results.

Setup the Look Up Table

Now let's set up the lookup table to map speeds to PWM commands. During simulation, the

block will use linear interpolation to estimate the value of the PWM command to achieve an

arbitrary speed.

Double-click the 1-D Lookup Table block to open its block parameter dialog. Set Table data

to PWMcmdMono and set Breakpoints to speedMono. Then click OK:

Once you set the lookup table data, the block will show a graph of your lookup table vectors:

Amplify the PWM duty cycle

Amplify the PWM duty cycle to cover a range of -100 to 100, to be compatible with the motor

driver later. Double-click the Gain block and set Gain to 100. Then click OK:

Add a Device Driver Block

To access the motor connected to the Arduino Nano Motor Carrier you need an Arduino

Device Driver block. In the Simulink Library Browser, navigate to Simulink Support for

Arduino Hardware, and examine the blocks inside the Arduino Motor Carrier section:

Notice that all the blocks are either source or sink blocks. This is because they represent the

boundary between the Arduino processor application (which you are modeling in Simulink)

and external devices, like the DC motor and magnetic encoder. Locate the M1 M2 DC Motors

block, and drag it into your model:

Configure the Device Driver Block

The M1 M2 DC Motors block requires one input signal, which is the drive command

expressed as a value between -100 and 100. Double-click the M1 M2 DC Motors block, and

make sure that the motor port is set to M1:

The Motor port property maps the block to one of two labeled DC motor ports (M1 or M2)

on the Motor Carrier. Create a new branch of the driveCmd  signal by right-clicking and

dragging the mouse from the signal line, and route the signal into the M1 M2 DC Motors

block:

Deploy the model to Arduino

You're almost ready to run the software controller on the Arduino Nano 33 IoT board! First,

you need to configure the model to run on Arduino. Open the Configuration Parameters

window by clicking the "gear" button:

Configuration Parameters is a set of options where you configure how your simulation

should run, what hardware you are running it on, and how the model algorithm should

handle various run-time conditions. Navigate to the Hardware Implementation pane, and

set Hardware Board to Arduino Nano 33 IoT:

Go to Target hardware resources > External mode > Communication interface and

choose Serial  as shown below:

When you set the model to run on a specific board, some of the options throughout

Configuration Parameters will set themselves automatically, as required. Click OK to return

to the model window. Previously you have been simulating your model using normal mode.

In normal mode, the default setting makes your model run on the computer without

communicating with any external hardware. In normal mode, you can prove that your system

works conceptually, before dealing with the details of implementing it on hardware.

To run the model on the Arduino Nano 33 IoT board, you will use Monitor & Tune under the

Hardware tab. In external mode, Simulink builds an executable from your model and

uploads it to the external hardware board. When the executable runs on the external

hardware board, you can interact with the running application using the Simulink model. This

enables you to monitor signals of interest and change parameter values in the model as it

runs on the hardware.

In the model window, change the simulation stop time to Inf so that it will run indefinitely.

Connect the DC Motor

At this point you have finished making a Simulink model capable of generating a signal that

you can send later to the Arduino Nano 33 IoT board to control the speed of a motor.

Connect a micro-geared DC motor to the Arduino Nano Motor Carrier.

Turn on the battery power by using the ON-OFF switch on the Carrier board. Now click the

Run button. You must wait for Simulink to build the executable and then initialize the

external mode infrastructure.

Note: If the model gets stuck in the code generation mode for more than a few

minutes, a) try double pressing the reset button on your Arduino Nano 33 IoT or b) it

could be because you have an "arduino object" (like in "a = arduino;"). You won't be able

to upload any Simulink model to the Arduino Nano 33 IoT until you clear the "arduino

object", because it is getting the COM port busy.

Once the application starts running, examine the oscillatory motion of the motor and

magnetic encoder. Is the speed oscillating at the same rate as the input speed command?

Stop the simulation, and then turn off the Motor Carrier power. Save the Simulink model.

PREVIOUS LESSON
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Configure the Blocks

Now let's configure the blocks to perform your specific algorithm. The Sine Wave block

needs to generate speed values in counts per second. Examine the range of speeds that you

measured for the motor; to do this, lets go to the MATLAB command line and run the

command

>> arduinosetup

Then, configure the Arduino Nano 33 IoT as in "Configuring Arduino Libraries" and run the

command

>> characterizeMotorScript

This characterizes the motor response.

Now let's configure the blocks to perform your specific algorithm. The Sine Wave block

needs to generate speed values in counts per second. Examine the range of speeds that you

measured for the motor; to do this, look into the data files you generated in the MATLAB

section of this chapter by issuing the following commands in the command window:

>> load motorResponse
>> min(speedMono)
>> max(speedMono)

Configure the Sin Block

Double-click the Sine Wave block to open its block parameter dialog. Configure the sine

wave to have an amplitude of 300 and a frequency of 0.2, to cover the range of measured

speeds. Then click OK:

Note: We obtained the value of 300 empirically by looking at the max speed obtained

from the motor characterisation process. You can modify this value based on your

results.

Setup the Look Up Table

Now let's set up the lookup table to map speeds to PWM commands. During simulation, the

block will use linear interpolation to estimate the value of the PWM command to achieve an

arbitrary speed.

Double-click the 1-D Lookup Table block to open its block parameter dialog. Set Table data

to PWMcmdMono and set Breakpoints to speedMono. Then click OK:

Once you set the lookup table data, the block will show a graph of your lookup table vectors:

Amplify the PWM duty cycle

Amplify the PWM duty cycle to cover a range of -100 to 100, to be compatible with the motor

driver later. Double-click the Gain block and set Gain to 100. Then click OK:

Add a Device Driver Block

To access the motor connected to the Arduino Nano Motor Carrier you need an Arduino

Device Driver block. In the Simulink Library Browser, navigate to Simulink Support for

Arduino Hardware, and examine the blocks inside the Arduino Motor Carrier section:

Notice that all the blocks are either source or sink blocks. This is because they represent the

boundary between the Arduino processor application (which you are modeling in Simulink)

and external devices, like the DC motor and magnetic encoder. Locate the M1 M2 DC Motors

block, and drag it into your model:

Configure the Device Driver Block

The M1 M2 DC Motors block requires one input signal, which is the drive command

expressed as a value between -100 and 100. Double-click the M1 M2 DC Motors block, and

make sure that the motor port is set to M1:

The Motor port property maps the block to one of two labeled DC motor ports (M1 or M2)

on the Motor Carrier. Create a new branch of the driveCmd  signal by right-clicking and

dragging the mouse from the signal line, and route the signal into the M1 M2 DC Motors

block:

Deploy the model to Arduino

You're almost ready to run the software controller on the Arduino Nano 33 IoT board! First,

you need to configure the model to run on Arduino. Open the Configuration Parameters

window by clicking the "gear" button:

Configuration Parameters is a set of options where you configure how your simulation

should run, what hardware you are running it on, and how the model algorithm should

handle various run-time conditions. Navigate to the Hardware Implementation pane, and

set Hardware Board to Arduino Nano 33 IoT:

Go to Target hardware resources > External mode > Communication interface and

choose Serial  as shown below:

When you set the model to run on a specific board, some of the options throughout

Configuration Parameters will set themselves automatically, as required. Click OK to return

to the model window. Previously you have been simulating your model using normal mode.

In normal mode, the default setting makes your model run on the computer without

communicating with any external hardware. In normal mode, you can prove that your system

works conceptually, before dealing with the details of implementing it on hardware.

To run the model on the Arduino Nano 33 IoT board, you will use Monitor & Tune under the

Hardware tab. In external mode, Simulink builds an executable from your model and

uploads it to the external hardware board. When the executable runs on the external

hardware board, you can interact with the running application using the Simulink model. This

enables you to monitor signals of interest and change parameter values in the model as it

runs on the hardware.

In the model window, change the simulation stop time to Inf so that it will run indefinitely.

Connect the DC Motor

At this point you have finished making a Simulink model capable of generating a signal that

you can send later to the Arduino Nano 33 IoT board to control the speed of a motor.

Connect a micro-geared DC motor to the Arduino Nano Motor Carrier.

Turn on the battery power by using the ON-OFF switch on the Carrier board. Now click the

Run button. You must wait for Simulink to build the executable and then initialize the

external mode infrastructure.

Note: If the model gets stuck in the code generation mode for more than a few

minutes, a) try double pressing the reset button on your Arduino Nano 33 IoT or b) it

could be because you have an "arduino object" (like in "a = arduino;"). You won't be able

to upload any Simulink model to the Arduino Nano 33 IoT until you clear the "arduino

object", because it is getting the COM port busy.

Once the application starts running, examine the oscillatory motion of the motor and

magnetic encoder. Is the speed oscillating at the same rate as the input speed command?

Stop the simulation, and then turn off the Motor Carrier power. Save the Simulink model.
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54. Set the Stop Time to “Inf”. 
55. Try to Run the Simulink canvas on the Arduino board. 
56. The first Engineering Kit has course content at this webpage 

https://aek.arduino.cc. Access to learn more about the sensors on the boards. 
 
 
  

https://aek.arduino.cc/


Week 13 
1. Open up the kit, and go to the webpage for the Engineering Kit Rev2 Arduino 

Education. 
2. Please check to make sure all parts are in the kit (TA). 
3. Please only use the parts needed for the motorcycle. Other kit contents should 

not be lost so that we are able to build the other projects later. 
4. Two (or more?) sets of screwdrivers are available with the teacher. Please 

borrow and return to the front desk so others may also use the screws. 
5. Go here to watch the assembly video, and then proceed to put together the 

motorcycle Content Preview (arduino.cc). 
6. In the video, parts are labelled according to the boxes, Motorcycle, M2, for 

example. 
7. Please try to complete motorcycle build in 45 minutes. 
8. For the Matlab code, please download the kit files or go here 

(Arduino_Engineering_Kit_Project_Files_Rev_2 - File Exchange - MATLAB 
Central (mathworks.com)). 

9. Connecting USB and motorcycle to PC. Matlab should send a message 
“Arduino detected. This device is ready for use with MATLAB Support 
Package for Arduino Hardware. Get started with examples and other 
documentation. This device is ready for use with Simulink Support Package 
for Arduino Hardware. Get started with examples and other documentation.” 

10. Proceed to test the battery, inertial motor, check to observe the scope changes 
when rotating manually the rotary encoder. Hope to see motorcycle balance 
function. Go to the Exercise 6_2. 

11. Work through Battey_0.slx. Make sure the code is working before proceeding 
to the next list item. 

12. Work through Encoder_0.slx and Encoder_1.slx. Make sure the code is 
working before proceeding to the next list item. 

13. Work through IMU_0.slx and IMU_1.slx. Make sure the code is working 
before proceeding to the next list item. 

14. Work through IW_Motor_0.slx. Make sure the code is working before 
proceeding to the next list item. 

15. If the parts are all working, let us try to test in Exercise 6_3 the 
hardwareModel_5.slx. 

16. When complete, please put all parts, including USB cable, back into kit box. 
 
Week 14 

1. If motorcycle was not disassembled in week 13, continue with testing. 

https://www.arduino.cc/education
https://www.arduino.cc/education
https://edu-content-preview.arduino.cc/content-preview/university/project/CONTENTPREVIEW+AEKR2
https://www.mathworks.com/matlabcentral/fileexchange/80419-arduino_engineering_kit_project_files_rev_2
https://www.mathworks.com/matlabcentral/fileexchange/80419-arduino_engineering_kit_project_files_rev_2


2. When complete, please disassemble motorcycle parts and put all parts back 
into kit box. 

 


