Motorcycle Assembly

Assuming we are using the Matlab license provided by Arduino Kit

(https://www.mathworks.com/campaigns/products/arduino-kit-rev2-license.html).
1. Let us make sure the Simulink Support Package for Arduino Hardware is

installed. Simulink Support Package for Arduino Hardware - File Exchange -

MATLAB Central (mathworks.com). Download this file and install for each
machine.
2. Also download the Matlab Support Package for Arduino Hardware.
MATLAB Support Package for Arduino Hardware - File Exchange - MATLAB

Central (mathworks.com). Download this file and install for each machine.

3. Courses | Arduino Cloud. Log into Arduino account, and access Arduino

course information at this weblink. The weblink for registering kit is at

Engineering Kit! (arduino.cc). The class may use the following group

username and password username: nchunanorobot password: NanOrOb0t.


https://www.mathworks.com/matlabcentral/fileexchange/40312-simulink-support-package-for-arduino-hardware
https://www.mathworks.com/matlabcentral/fileexchange/40312-simulink-support-package-for-arduino-hardware
https://www.mathworks.com/matlabcentral/fileexchange/47522-matlab-support-package-for-arduino-hardware?s_tid=ta_fx_results
https://www.mathworks.com/matlabcentral/fileexchange/47522-matlab-support-package-for-arduino-hardware?s_tid=ta_fx_results
https://app.arduino.cc/courses
https://engineeringkit.arduino.cc/aekr2/module/engineering/lesson/02-getting-started-with-arduino-matlab-and-simulink

Week 12

1.

Open up the kit, and go to the webpage for the Engineering Kit Rev2 Arduino
Education.

Please check to make sure all parts are in the kit (TA).

Please only use the parts needed for the motorcycle. Other kit contents should not
be lost so that we are able to build the other projects later.

Two (or more?) sets of screwdrivers are available with the teacher. Please borrow
and return to the front desk so others may also use the screws.

In this class we are going to make sure that the computers are able to connect to
the Arduino board, check battery and ensure the inertial motor functions when
electrically connected to Arduino.

(https://engineeringkit.arduino.cc/aekr2 /module/engineering/lesson/03-

introduction-to-mechatronics).

https://engineeringkit.arduino.cc/guide/cheatsheet.
If the link cannot be accessed, follow the instructions here.

There are two types of motors in the kit:

MICRO GEARED DC DC MOTOR
MOTOR W/ENCODER WITH ENCODER

Figure 1. DC motors in the AEK.

8.

We are going to work with the Micro geared DC Motor with Encoder (the rear

wheel motor) which has the following pinouts.


https://www.arduino.cc/education
https://www.arduino.cc/education
https://engineeringkit.arduino.cc/aekr2/module/engineering/lesson/03-introduction-to-mechatronics
https://engineeringkit.arduino.cc/aekr2/module/engineering/lesson/03-introduction-to-mechatronics
https://engineeringkit.arduino.cc/guide/cheatsheet

o‘ ‘
/

m — D
m — [
C — B
C gC — B
Cl —m
i
‘N 1 O

.

Figure 2. Pinouts for the micro geared DC inertial motor.

9. To have the kit function, 18650 type batteries are to be used: these are 3.7 V,
2500-2600 mAh. For a discharge rating of 5 C, the total current from the battery is
2500 mAh * 5 C = 12,500 mA. The maximum current discharge for these batteries
should be at 20 A, and the battery weighs ~43.8 g. Please pay attention to polarity
of the battery when installing to motorcycle.

10. The battery is important because we need the extra voltage to help drive the DC

motors. The board itself is not sufficient to provide the power needed.

Figure 3. Wiring schematic for the micro geared DC inertial motor.

11. Connect the Arduino board correctly to the motor carrier as in Figure 4. Following



that let’s connect the micro geared DC motor wires to the Arduino NanoloT33

board. Use for example the M1 motor connections.

Figure 4. Connect the Arduino board correctly to the motor carrier.
12. Plug the USB cable into computer, turn the on-off switch to “On” position and
ensure the LED is lit.

Figure 5. Wires from motor and battery are connected to the motor carrier board. The

on-off switch remains in the “Off” position.
13. To make any mounting changes, turn off the switch.
14. Once Arduino is connected, type the following commands into Matlab command

line:



>> clear a
>> a = arduino

15. The following command creates a carrier object in the Matlab workspace

associated with the Arduino object.

>> carrier = motorCarrier(a)

16. The next, third object, gives control of the motor connected to M1 in Matlab. Use
the following command to create a DC motor object that is associated with the
Carrier object, and examine the displayed object properties in the Command
Window.

>> dcm = dcmotor(carrier, 'M1")

17. Now it is possible to drive the motor. The dcmotor() object has three properties:
MotorNumber, Speed and Running. The Speed can be changed from -1 to 1.

IsRunning is controlled with start and stop. Try the following commands.

>> start(dcm)

>> dcm.Speed = 0.5;

>> dcm.Speed = 0.3;

>> dcm.Speed = -0.3;
>> dcm.Speed = -0.1;
>> dcm.Speed = -0.05;
>> dcm.Speed = -0.01;
>> dcm.Speed = -0.3;

>> stop(dcm)
>> start(dcm)
>> stop(dcm)
>> dcm.Speed = -0.5;
>> start(dcm)
>> stop(dcm)

18. Next we are going to characterize the DC motor.

19. Set up as before.

>> clear a carrier

>> a = arduino

>> carrier = motorCarrier(a)

>> dcm = dcmotor(carrier, 'M1")

>> enc rotaryEncoder(carrier,1)

20. The encoder count buffer can be read and note the result.

>> readCount(enc)

21. The geometry of this encoder is such that there are three full cycles of quadrature

when the motor shaft turns one full revolution. Recall that the quadrature signals



undergo four total changes in a full cycle. This means that there are 12 quadrature
signal changes per revolution for the motor shaft. Thus, we can measure the
angular position of the motor shaft with a resolution of 30 degrees, if we know the
encoder count. Manually rotate the magnetic disk one full clockwise revolution
(when looking down on the magnetic disk), and read the encoder count again with
the previous command.

22. Note that switching the polarity of Out A and Out B would reverse the sign of the
count readings.

23. Check again by rotating a full rotation and then check the counts.

>> shaftAngle = (readCount(enc)/12)*360

24. The gear motor has a gear ratio of 100:1. Use the following commands to get the
angle of the output shaft in degrees, and then normalize to the range of 0 to 360
degrees.

>> axleAngle = (readCount(enc)/12)*360/100
>> axleAngleNorm = mod(axleAngle, 360)

25. We can determine the speed of the output shaft in rpm and in degrees per second.

>> dcm.Speed = 0.5;

>> start(dcm)

>> rpm = readSpeed(enc)/100
>> degPersec = rpm/60%*360

26. Now we are going to write a livescript to characterize the motor. Input the
following code.

%% 1. Create test data
maxPWM = 1.00; % Maximum duty cycle

incrPWM = 0.05; % PWM increment
PWMcmdRaw = (-maxPWM:incrPWM:maxPWM) ; % Column vector of duty cycles from -1 to
1

27. Run the livescript and examine the Workspace. There should be a vector
containing numbers ranging from -1 to 1 with 0.05 increments. This is going to be
used to generate the PWM signal applied to DC motor.

28. The next line of the livescript prepares the motor.



%% 2. Create and initialize device objects

clear a dcm carrier enc % Delete existing device objects

a = arduino;

carrier = motorCarrier(a);

dcm = dcmotor(carrier, 'M1'); % Connect a DC motor at 'M1' port on the
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1); % Connect the encoder of 'M1' at the encoder
port 1 on the Arduino Nano Motor Carrier board

29. Now let’s add a section to start the motor with PWM value, read the motor speed,

and then stop the motor.

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 0;

gearRatio = 100; % As per the motor spec sheet, gear
ratio equals 100:1

start(dcm) % turn on motor

dcm.Speed = PWMcmdRaw(1);

pause(1) % wait for steady state

speedRaw(1) = readSpeed(enc)/gearRatio; % read motor speed in rpm of the
output shaft

stop(dem); % turn off motor

dcm.Speed = 0;

30. Try running this section with different values of PWMcmdRaw and examine the
Matlab Workspace.
31. Now update the third section with a for loop.

%% 3. Measure raw motor speed for each PWM command

dcm.Speed = 9;

gearRatio = 100; % As per the motor spec sheet,
gear ratio equals 100:1

start(dcm) % turn on motor

for ii = 1:length(PWMcmdRaw)
dcm.Speed = PWMcmdRaw(ii);

pause(1) % wait for steady state
speedRaw(ii) = readSpeed(enc)/gearRatio; % read motor speed in rpm of the
output shaft
end
stop(dcm) % turn off motor

dcm.Speed = 0;

32. At this point, the livescript should be giving a warning to the assignment on
speedRaw(ii). This warning appears because the script is assigning values to
increasing indices of speedRaw, and as a result speedRaw needs to increase its
size on every iteration to accommodate the new element. In some cases, this can
lead to performance issues because the variable’s memory may need to be
reallocated many times. You can solve this problem by defining the vector in
advance with the zeros function to allocate space for speedRaw before populating

the vector with values. Make the update and test to ensure the code works.



speedRaw = zeros(size(PWMcmdRaw))

33. Now let’s plot the Measured Speed versus the PWM Duty Cycle.

%% 4. Graph raw data

plot(PWMcmdRaw, speedRaw) % raw speed measurements
title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command")

ylabel('Measured Speed (rpm)')

34. A plot should open up in the output column of the Live Editor. Notice the features
of the speed-PWM relationship.

35. Next try to examine speedRaw directly in the command line.

>> speedRaw

36. You can also compare to a first-order difference to see where non-increasing
values are located.

>> diff(speedRaw)

37. Let’s write a new section to perform post processing on the data.

%% 4. Post-process and save data

idx = (diff(speedRaw) > 0); % find indices where vector is increasing
speedMono = speedRaw(idx); % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx) ; % Keep only corresponding PWM values
PWMcmdMono (speedMono == 0) = 0; % enforce zero power for zero speed

save motorResponse PWMcmdMono speedMono % save post-processed measurements

38. The following command allows to compare the raw and filtered values.

%% 5. Graph raw and post-processed data

plot(PWMcmdRaw, speedRaw) % raw speed measurements
hold on
plot(PWMcmdMono, speedMono) % non-monotonic measurements

filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')

ylabel('Measured Speed (rpm)')

legend('Raw Data', '"Monotonic Data', 'Location', 'northwest')

39. When finished with this task, create a section to delete device objects.

%% 6. Delete device objects

clear a dcm carrier enc

40. The next task is to work with Matlab functions. Let’s create a Live Function.

41. The inputs and outputs to the function need to be determined and these inputs are



PWMcmdRaw, dem and encoder object enc. The outputs to the function are
PWMcmdMono and speedMono.

function [PWMcmdMono, speedMono] = myMotorFunction(PWMcmdRaw, dcm, enc)

42. To make the entire algorithm, let’s take some of the code from the livescript and

copy to the live function.

function [PWMcmdMono, speedMono] = myMotorFunction(PWMcmdRaw, dcm, enc)

3. Measure raw motor speed for each PWM command
speedRaw = zeros(size(PWMcmdRaw)); % Preallocate vector for speed
measurements

dcm.Speed 0;
gearRatio 100; % As per the motor spec sheet,
gear ratio equals 100:1

start(dcm) % Turn on motor
for ii = 1:length(PWMcmdRaw)

dcm.Speed = PWMcmdRaw(ii);

pause(1) % Wait for steady state
speedRaw(ii) = readSpeed(enc)/gearRatio; % read motor speed in rpm of the
output shaft

end

4. Post-process and save data

idx = diff(speedRaw) > 0; % find indices where vector is increasing
speedMono = speedRaw(idx); % Keep only increasing values of speed
PWMcmdMono = PWMcmdRaw(idx) ; % Keep only corresponding PWM values
PWMcmdMono (speedMono == 0) = 0; % enforce zero power for zero speed

save motorResponse, 'PWMcmdMono', 'speedMono’ % save post-processed measurements

5. Graph raw and post-processed data

plot(PWMcmdRaw, speedRaw) % raw speed measurements

hold on

plot(PWMcmdMono, speedMono) % non-monotonic measurements filtered out

title('100:1 Gearbox Motor Steady State Response')
xlabel('PWM Command')

ylabel('Measured Speed (rpm)')
legend('Raw Data', 'Monotonic Data')

43. Let’s save the Live Function as myMotorFunction.mlx.

44. Now we can actually call the function in the Live Script.



1. Create test data

maxPWM = 1.00; % maximum duty cycle

incrPWM = 0.05; % PWM increment

PWMcmdRaw = (-maxPWM:incrPWM:maxPWM)'; % column vector of duty cycles from -1 to 1

2. Create and initialize device objects
clear a carrier dcm enc % Delete existing device objects

a = arduino;

carrier = motorCarrier(a);

dcm = dcmotor(carrier, 'M1"); % Connect a DC motor at 'M1' port on the
Arduino Nano Motor Carrier board

enc = rotaryEncoder(carrier,1); % Connect the encoder of 'M1' at the
encoder port 1 on the Arduino Nano Motor Carrier board

3-5. Call motor characterization function
[PWMcmdMono, speedMono] = characterizeMotorFen(PWMcmdRaw, dem, enc) ;

6. Delete device objects
clear a carrier dcm enc

45. Note that the function call saves the analysis data to motorResponse.mat every

time the function is called. We can update the code to save to a filename of choice.

function[PWMcmdMono, speedMono] = myMotorFunction(PWMcmdRaw, dcm, enc, filename)
46. This input is written into the save command.
save(filename, 'PWMcmdMono', 'speedMono' )% save post-processed measurements
47. Depending on the motor used, we could give a specific name in the function call.

[PWMcmdMono, speedMono] = myMotorFunction(PWMcmdRaw, dcm, enc, 'motorResponse’);

48. The final task in this week is to try to setup a Simulink. Create the following in a
blank Simulink canvas.



1-D T(u)

ARDUINO

Motor: M1
M1 M2 DC Motors

100%

VariableStepAuto

49. The Sine wave has output which is converted to a signal between -1 and 1 in a
Lookup Table. The M1, M2 motors intake integer signals from -100 to 100 and
the M3, M4 motors take -255 to 255. This is the purpose of the Gain block. The
scope sink allows us to monitor the signal.

@ Block Parameters: 1-D Lookup Table1 X
Lookup Table (n-D) L

Perform n-dimensional interpolated table lookup including index searches. The table is a sampled representation of
a function in N variables. Breakpoint sets relate the input values to positions in the table. The first dimension
corresponds to the top (or left) input port.

Table and Breakpoints

Algorithm  Data Types

Number of table dimensions: \ 1

]

Data specification:

Breakpoints specification:

Table data:
Breakpoints 1:

Table and breakpoints ~

Explicit values v
Source Value
Dialog % \PWMcmdMono ]

Dialog - [speedMono E

Edit table and breakpoints...

9 Cancel Help Apply
50. Configure the Sine block to have Amplitude 300, Bias 0, Frequency (rad/sec) 0.2,

Phase (rad) 0 and Sample Time 0.
51. Have the Gain at 100, with Element-wise (K.*u) multiplication.
52. Open the Configuration Parameters Window by clicking on the Model Settings
Gear Icon in Modeling.
53. Make sure the Hardware Implementation is set to “Arduino Nano 33 [oT” and the

external mode is “Serial”.



54. Set the Stop Time to “Inf”.

55. Try to Run the Simulink canvas on the Arduino board.

56. The first Engineering Kit has course content at this webpage
https://ack.arduino.cc. Access to learn more about the sensors on the boards.



https://aek.arduino.cc/

Week 13

1. Open up the kit, and go to the webpage for the Engineering Kit Rev2 Arduino
Education.

2. Please check to make sure all parts are in the kit (TA).

3. Please only use the parts needed for the motorcycle. Other kit contents should
not be lost so that we are able to build the other projects later.

4. Two (or more?) sets of screwdrivers are available with the teacher. Please
borrow and return to the front desk so others may also use the screws.

5. Go here to watch the assembly video, and then proceed to put together the

motorcycle Content Preview (arduino.cc).

6. In the video, parts are labelled according to the boxes, Motorcycle, M2, for
example.

7. Please try to complete motorcycle build in 45 minutes.

8. For the Matlab code, please download the kit files or go here
(Arduino_Engineering_Kit Project Files Rev_2 - File Exchange - MATLAB

Central (mathworks.com)).

9. Connecting USB and motorcycle to PC. Matlab should send a message
“Arduino detected. This device is ready for use with MATLAB Support
Package for Arduino Hardware. Get started with examples and other
documentation. This device is ready for use with Simulink Support Package
for Arduino Hardware. Get started with examples and other documentation.”

10. Proceed to test the battery, inertial motor, check to observe the scope changes
when rotating manually the rotary encoder. Hope to see motorcycle balance
function. Go to the Exercise 6 2.

11. Work through Battey 0.slx. Make sure the code is working before proceeding
to the next list item.

12. Work through Encoder 0.slx and Encoder 1.slx. Make sure the code is
working before proceeding to the next list item.

13. Work through IMU_0.slx and IMU _ 1.slx. Make sure the code is working
before proceeding to the next list item.

14. Work through IW_Motor 0.slx. Make sure the code is working before
proceeding to the next list item.

15. If the parts are all working, let us try to test in Exercise 6 _3 the
hardwareModel 5.slx.

16. When complete, please put all parts, including USB cable, back into kit box.

Week 14

1. If motorcycle was not disassembled in week 13, continue with testing.


https://www.arduino.cc/education
https://www.arduino.cc/education
https://edu-content-preview.arduino.cc/content-preview/university/project/CONTENTPREVIEW+AEKR2
https://www.mathworks.com/matlabcentral/fileexchange/80419-arduino_engineering_kit_project_files_rev_2
https://www.mathworks.com/matlabcentral/fileexchange/80419-arduino_engineering_kit_project_files_rev_2

2. When complete, please disassemble motorcycle parts and put all parts back

into kit box.



