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THE FIRST AND SECOND LAWS OF THERMODYNAMICS 
dU = TdS + dE



- If mechanical work is performed 
by pressure p, the energy is  

- . 

- The energy is described by the 
Helmholtz ( ) or Gibbs 
free energy ( ). 

- In many solid state problems, the 
application of thermodynamics 
boils down to evaluating when 

 or .

dE = − pdV

F = U − TS
G = U − TS + pV

dF = 0 dG = 0
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- We calculate the field at some point P away from a 
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Fig. 8.7 The Biot–Savart law is used to calculate the magnetic field at
point P due to an infinite wire

Vector r is from the current element to the point where the
field is to be calculated. The field is found by integrating over
the entire circuit.

Figure 8.7 shows how this integration is done for an in-
finitely long straight wire along the x axis. The contribution
at point P is obtained by dropping a perpendicular from P

to the wire to define x = 0. The distance from P to the wire
is a. The contribution from an element dx at point x is
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This agrees with Eq. 8.7 and the result obtained using
Ampere’s circuital law.

A steady current from a point source which spreads uni-
formly in all directions generates no magnetic field. To see
why consider Fig. 8.8. The source of current is at O. The
magnetic field at P can be calculated using the Biot–Savart
law. For any element ds a symmetric element ds′ can be
selected, such that ds × r = −ds′ × r′. Associated with
each element is a small area dA, and the current along ds is
i = jdA. We can set dA = dA′ so i is the same in each case.
Therefore, B = 0. (This can also be shown using Ampere’s
law; see Problem 11.)

8.2.4 The Displacement Current

Derivation of Ampere’s law requires that there be no charge
buildup, so that the total current through a closed surface
is zero. However, we will consider an action potential in
which the membrane capacitance charges and discharges.
To see how this affects Ampere’s law, consider current i

P

r' r

O

i d si d s'

Fig. 8.8 The magnetic field from a spherically symmetric radial distri-
bution of current is zero. The source at O sends current uniformly in all
directions. P is the observation point. For any element ds there is a cor-
responding ds′ such that ds×r = −ds′×r′. The current through a small
area dA around ds is i. The same current flows through a correspond-
ing area around ds′. Can you obtain the same result by a symmetry
argument?
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Fig. 8.9 A wire and capacitor plates. The integral of the current density
through surface S, which is pierced by the wire, is i. Through surface
S′, which is between the capacitor plates, the integral is zero. If the
displacement current density is included, both surface integrals are the
same. (If surfaces S and S′ are not large enough, there is also a net
displacement current through S, as can be seen from Fig. 8.10)

charging or discharging the two shaded capacitor plates in
Fig. 8.9. The area of each capacitor plate is A. The region
between the plates, of thickness b, is filled with dielectric
of dielectric constant κ . The integral

!
j · dS is i for sur-

face S and zero for surface S′. Because of the current, the
charge density σ on the left-hand plate is increasing at a
rate given by i = Adσ/dt , while on the right-hand plate
the charge is decreasing because i = −Adσ/dt . Since the
electric field between the plates is E = σ/κε0 we can say
that i = Ad(κε0E)/dt . The quantity D = κε0E is called
the electric displacement, and

jd =
∂D

∂t

Right hand rule!
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- We calculate the field at some point P away 
from a current carrying wire. 

-  

-  

- Here the current 
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Fig. 8.10 The conduction current (white arrows) and displacement
current (black arrows) in a discharging capacitor. The conduction cur-
rent decreases with distance out the capacitor plates. The displacement
current includes the fringing field. (From Purcell and Morin 2013. Used
by permission)

is called the displacement current density. More careful con-
sideration shows that Ampere’s law is valid when the charge
on the plates is changing, if we replace j by j + jd :

∮
B · ds = µ0

!
(j + jd) · dS. (8.13)

With this change, if S and S′ are circles of radius a, Am-
pere’s law gives B = µ0i/2πa for either one. (The radius of
the circle must be very large; see the discussion in the next
paragraph.)

What current should be used in the Biot–Savart law? A
very surprising answer is that as long as the fields are rel-
atively slowly varying (so that the emission of radio waves
is not important), the displacement current contributes noth-
ing. We are free to include it or ignore it. Purcell and Morin
(2013, p. 435) and Shadowitz (1975, p. 416) discuss why this
is so. It is not always easy to calculate the entire displacement
current. For example, Fig. 8.10 shows how the conduction
current and displacement current vary when current charges a
capacitor. Notice that some of the displacement current flows
to and from the back sides of the capacitor plates. This is why
we said in the previous paragraph that the radius of the curve
defining surfaces S and S′ must be very large in order that
one surface has no net flux of displacement current and the
other has all of it. Whatever their size, however, Eq. 8.13 is
valid.

It was mentioned above that a steady current from a point
source that spreads uniformly in all directions generates no
magnetic field according to the Biot–Savart law. Yet any cir-
cular loop has current flowing through it, so Ampere’s law
suggests that there is a field. The discrepancy is resolved by
noting that the current comes from a charge q at the origin
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Fig. 8.11 The geometry for calculation of the magnetic field due to a
current element i dx or current dipole px stretched along the x axis

that is being drained off at a rate i = −dq/dt . This gives rise
to a displacement current jd that cancels j (see Problem 11).

8.3 TheMagnetic Field Around an Axon

We can use the Biot–Savart law to calculate the magnetic
field due to an action potential propagating down an infinitely
long axon stretched along the x axis and embedded in an infi-
nite homogeneous conducting medium. Section 7.1 showed
that there are three components to the current: ii along the
interior of the axon, dio out through the membrane (includ-
ing both displacement current and conduction current), and
current in the surrounding medium.

The principle of superposition allows us to calculate the
field due to the exterior current by finding the magnetic field
dB from current dio into the surrounding medium from axon
element dx, and then integrating along the axon. We saw in
Chap. 7 that the current in the external medium from a small
element dx flows uniformly in all directions, as if from a
point source. We learned in the preceding section that the
magnetic field generated by a spherically symmetric radial
current is zero. Therefore, in the approximation that the axon
is very thin, we can ignore the external current from each
element dx. We can do this only because the medium is
infinite, homogeneous, and isotropic. When the exterior con-
ductor has boundaries or structure, the symmetry is broken
and the external currents contribute to the magnetic field. Our
calculation breaks down very close to the axon. Distortions
from the field due to the external current because the axon is
not infinitely thin are about 1 % near the axon. The current
through the cell membrane gives a very small contribution to
the magnetic field—roughly 1 part in 106.

The major contribution is therefore from ii . We use the
law of Biot–Savart, Eq. 8.12. The observation point is in the
xy plane at (x0, y0, 0) and the axon lies along the x axis so
that ds = x̂ dx, as shown in Fig. 8.11. The product ds × r

Current element idx or current dipole px stretched along x-axis
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Fig. 8.13 The magnetic field Bz 0.12 mm from a crayfish axon in an
infinite homogeneous conducting medium is shown. The field was cal-
culated using the program of Fig. 8.12. The exterior potential for this
configuration was calculated in Sect. 7.4

Fig. 8.14 A three-dimensional plot of the magnetic field around the
crayfish axon. The minimum distance from the axon is 0.5 mm

The x axis points to the patient’s left, the y axis points up,
and the z axis points toward the front of the patient, roughly
perpendicular to the chest wall. Assume that p is at the origin
and the anterior chest surface is the xy plane at some fixed
value of z. We ignore distortions to the field which arise be-
cause no current can flow in the region beyond the body, and
we assume that the conductivity of the body is homogeneous
and isotropic. From Eq. 8.17, we obtain the three components

(c)

(b)

(a)

pz

x

y

z

(x 2 , 0, z)

(x1, 0, z )

x

y

z

(x1, 0, z )

(x 2 , 0, z)

px

x

y

(x1, 0, z )

(x 2 , 0, z)

py

z

Fig. 8.15 The magnetic field produced by the three components of a
current dipole at the origin. The coordinate system is that customarily
used for magnetocardiography. The x axis points toward the subject’s
left, the y axis is vertical, and the z axis points forward through the
subject’s chest. The coordinate system is viewed over the subject’s right
shoulder

of B along the line (x, 0, z):

Bx =
µ0pyz

4πr3 ,

By =
µ0 (pzx − zpx)

4πr3 ,

Bz = −
µ0pyx

4πr3 .

(8.18)

Compare these results to the lines of B in Fig. 8.15, which
were drawn for the three components of p using the right-
hand rule. Along the line being considered (y = 0, z =
const), px contributes only to By , and By is always nega-
tive. Component py contributes to both Bx and Bz; the latter
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Fig. 8.10 The conduction current (white arrows) and displacement
current (black arrows) in a discharging capacitor. The conduction cur-
rent decreases with distance out the capacitor plates. The displacement
current includes the fringing field. (From Purcell and Morin 2013. Used
by permission)
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sideration shows that Ampere’s law is valid when the charge
on the plates is changing, if we replace j by j + jd :
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pere’s law gives B = µ0i/2πa for either one. (The radius of
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defining surfaces S and S′ must be very large in order that
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other has all of it. Whatever their size, however, Eq. 8.13 is
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source that spreads uniformly in all directions generates no
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that is being drained off at a rate i = −dq/dt . This gives rise
to a displacement current jd that cancels j (see Problem 11).
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We can use the Biot–Savart law to calculate the magnetic
field due to an action potential propagating down an infinitely
long axon stretched along the x axis and embedded in an infi-
nite homogeneous conducting medium. Section 7.1 showed
that there are three components to the current: ii along the
interior of the axon, dio out through the membrane (includ-
ing both displacement current and conduction current), and
current in the surrounding medium.

The principle of superposition allows us to calculate the
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dB from current dio into the surrounding medium from axon
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Chap. 7 that the current in the external medium from a small
element dx flows uniformly in all directions, as if from a
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is very thin, we can ignore the external current from each
element dx. We can do this only because the medium is
infinite, homogeneous, and isotropic. When the exterior con-
ductor has boundaries or structure, the symmetry is broken
and the external currents contribute to the magnetic field. Our
calculation breaks down very close to the axon. Distortions
from the field due to the external current because the axon is
not infinitely thin are about 1 % near the axon. The current
through the cell membrane gives a very small contribution to
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The major contribution is therefore from ii . We use the
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- The figure shows magnetic field maps recorded 
over the scalp of a subject who heard a series of 
words and either ignored them by reading 
something else or listened carefully and counted 
how many of the words were in a predetermined 
list (from Haamaalaainen et al. 1993). 

- The second sustained field peak is stronger in 
subjects that were focused with paying attention 
to the list.
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p

B

Fig. 8.19 A current dipole p is oriented radially inside a homogeneous
conducting sphere. The return current is independent of the azimuthal
angle, φ. By symmetry the magnetic field, if any, must be in the φ di-
rection; the current in Ampere’s circuital law, which is the sum of the
current in p and the return current, is zero

correctly. Extracellular current does influence the tangential
components of the magnetic field. Since the skull is not a per-
fect sphere, there is some effect of the radial component of
p on the MEG. The EEG is sensitive to both radial and tan-
gential components of p. The information available from the
EEG and MEG has been reviewed by Wikswo et al. (1993).

In the last decade, the use of the MEG has grown dramat-
ically for conditions such as epilepsy, stroke, chronic pain,
and dyslexia (Hari and Salmelin 2012).

Measurements of the magnetoencephalogram are often
based on evoked responses. A repetitive stimulus—audible,
visual, or tactile—is presented to the subject or the subject
is asked to perform a repetitive task such as flexing a finger.
Signal-averaging techniques are used to identify the associ-
ated changes in magnetic field (see Chap. 11). Figure 8.20
shows averaged magnetic field contours measured over the
scalp of a subject who heard a string of words presented in
random order every 2.3 s. Sometimes the subject was asked
to read something else and ignore the words. At other times
the subject was asked to pay attention and count how many of
the words were on a list. The first peak, 100 ms after presen-
tation of the word, was the same in both cases. The sustained
field peak, SF, was considerably stronger when the subject
was paying attention to the list. Magnetic contours and the
equivalent current dipole source are also shown.

8.6 Electromagnetic Induction

In 1831 Michael Faraday discovered that a changing mag-
netic field causes an electric current to flow in a circuit. It
does not matter whether the magnetic field is from a per-
manent magnet moving with respect to the circuit or from
the changing current in another circuit. The results of many
experiments can be summarized in the Faraday induction

Fig. 8.20 Magnetic field maps recorded over the scalp of a subject who
heard a series of words and either ignored them by reading something
else or listened carefully and counted how many of the words were in
a predetermined list. The features are discussed in the text. Reprinted
with permission from Hämäläinen et al. 1993. Copyright c© 1993 by
the American Physical Society

law:
∮

E · ds = −
d

dt

!
B · dS = −

dΦ

dt
. (8.21)

It states that the line integral of E around a closed path
is equal to minus the rate of change of the magnetic flux
through any surface bounded by the path. The relationship
between the direction of S and ds is given by a right-hand
rule: if the fingers of the right hand curl around the circuit
in the direction of ds, the thumb of the right hand points in
the direction of a positive normal to S. The units of mag-
netic flux Φ =

"
B · dS are T m2 or weber (Wb). Rapidly

changing magnetic fields can induce currents large enough to
trigger nerve impulses. This is discussed in Sect. 8.7.

The differential form of the Faraday induction law is (see
Problem 22)

curl E = ∇ × E = −
∂B

∂t
. (8.22)

The result of the vector operation curl is another vector. In
Cartesian coordinates the components of ∇ × E are

(∇ × E)x =
∂Ez

∂y
−

∂Ey

∂z
,

(∇ × E)y =
∂Ex

∂z
−

∂Ez

∂x
,

(∇ × E)z =
∂Ey

∂x
−

∂Ex

∂y
.





- Magnetic properties of organisms, such as 
algae, worms, and birds allow them to 
geospatially geolocate. 

- Certain bacteria live in oxygen-deficient, 
sulfur-rich environments, thus contain more 
Fe3S4 (~600 K) instead of magnetite Fe3O4 
(Curie 847 K). 

- In medical research, there are reports of 
single domain magnetite 10 - 70 nm in 
diameter used to attack cancerous cells with 
hyperthermia (effectively heating the cells 
when an external oscillating field is applied, 
which causes the nanoparticles to rotate). 

- The body contains, by some sources, 3 - 4 g 
of iron, mostly stored in the liver.

BIOMAGNETISM
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Fig. 8.24 A typical curve of B vs H for a ferromagnetic material.
The curve shows hysteresis, and the arrows show the direction of travel
around the curve WXYZ. Points W and Y show where M saturates.
Points X and Z show the remanent magnetic field when H = 0

magnetic field (points X and Z). If the temperature of the
sample is raised above a critical temperature called the Curie

temperature, the magnetism is destroyed.

8.8.2 Measuring Magnetic Properties in
People

Several kinds of measurements can be based on magnetic ef-
fects in materials. A common component of dust inhaled by
miners and industrial workers is magnetite, Fe3O4, which is
ferrimagnetic. By placing the thorax in a fixed magnetic field
for a few seconds, the particles can be aligned. The field is
turned off and the remanent field measured. The use of mag-

netopneumography in occupational health is described by
Stroink (1985). Cohen et al. (1984) have modeled the process
by which the particles are magnetized, as well as the relax-
ation process by which the magnetization disappears after the
external field is removed. Relaxation curves are used to esti-
mate intracellular viscosity and the motility of macrophages
(scavenger white cells) in the alveoli (Stahlhofen and Moller
1993).

The magnetic susceptibility of blood and myocardium
is different from the susceptibility of surrounding lung tis-
sue. An externally applied magnetic field induces a field
that changes as the volume of the heart changes. It can be
measured externally. The theory and experiments have been
described by Wikswo (1980).

Susceptibility measurements can also be used to measure
the total iron stores in the body. Normally the body con-
tains 3–4 g of iron. About a quarter of it is stored in the
liver. The amount of iron can be elevated from a large num-
ber of blood transfusions or in certain rare diseases such as
hemochromatosis and hemosiderosis. The liver is an organ
whose susceptibility can easily be measured. The suscep-
tibility varies linearly with the amount of iron deposited.
Magnetic susceptometry has been used to estimate body iron
stores (Nielsen et al. 1995).

Fig. 8.25 The small black dots are magnetosomes, small particles
of magnetite in the magnetotactic bacterium Aquaspirillum magneto-
tacticum. The vertical bar is 1µm long. The photograph was taken by Y.
Gorby and was supplied by N. Blakemore and R. Blakemore, University
of New Hampshire.

8.8.3 Magnetic Orientation

Magnetism is used for orientation by several organisms. A
history of studies in this area is provided in a very readable
book by Mielczarek and McGrayne (2000). Finegold (2012)
reviews sensing of static fields. Several species of bacte-
ria contain linear strings of up to 20 particles of magnetite,
each about 50 nm on a side encased in a membrane (Frankel
et al. 1979; Moskowitz 1995). Over a dozen different bac-
teria have been identified that synthesize these intracellular,
membrane-bound particles or magnetosomes (Fig. 8.25). In
the laboratory the bacteria align themselves with the local
magnetic field. In the problems you will learn that there is
sufficient magnetic material in each bacterium to align it
with the earth’s field just like a compass needle. Because of
the tilt of the earth’s field, bacteria in the wild can thereby
distinguish up from down.

Other bacteria that live in oxygen-poor, sulfide-rich en-
vironments contain magnetosomes composed of greigite
(Fe3S4), rather than magnetite (Fe3O4). In aquatic habitats,
high concentrations of both kinds of magnetotactic bacte-
ria are usually found near the oxic–anoxic transition zone

(OATZ). In freshwater environments the OATZ is usually at
the sediment–water interface. In marine environments it is
displaced up into the water column. Since some bacteria pre-
fer more oxygen and others prefer less, and they both have
the same kind of propulsion and orientation mechanism, one
wonders why one kind of bacterium is not swimming out
of the environment favorable to it. Frankel and Bazylinski
(1994) proposed that the magnetic field and the magneto-
somes keep the organism aligned with the field, and that
they change the direction in which their flagellum rotates to
move in the direction that leads them to a more favorable
concentration of some desired chemical.

The size distribution of these particles averages in many cases 
around 50 nm, important for maintaining the remnant magnetization 

field.



- In birds, the pineal gland is likely to be magneto sensitive. The “mechanism of the 
pineal’s response is a decrease in enzymatic activity of hydroxyindole-O-methyl-
transferase (HIOMT) and N-acetyl-serotonin- transferase (NAT) when the animal is 
exposed to a 50% decrease in the ambient magnetic field” (Beason, Semm). 

- In humans, this enzyme (acetyl-serotonin C12H14N2O2) is encoded by the gene near the 
end-caps of the X-chromosome, and is part of the pathway of conversion of 
normelatonin to melatonin (an important part regulating sleep-wake cycle, and 
interaction with melanin, which changes skin color). 

BIOMAGNETISM

https://en.wikipedia.org/wiki/Acetylserotonin_O-methyltransferase

Acetyl-serotonin

https://en.wikipedia.org/wiki/Melatonin



- A simple analysis to show that energetically, using magnetic effects can be meaningful: 
assume a bio-magnetosome (some biomagnetic object) has an energy in the Earth’s 
field of . Compare to the thermal energy, this factor is  

- . For larger magnetosomes, 
approximate magnetization at 100 times larger, then this ratio approaches 20. The 
magnetic field due to a typical power line is 100 times smaller, at 5*10-7 T! 

- For electric fields, the situation is not so simple, due to our skin and dielectric effects 
which work to attenuate the electric field strength. Nonetheless, it is still possible in 
some to measure a “resistance” with a handheld multimeter.

mB
mBEarth

kBT
=

(6.4 * 10−17J/T)(5 * 10−5T)
(1.38 * 10−23J/K)(300K)

= 0.77

BIOMAGNETISM OF THE HUMAN BODY



- Let’s consider two simple models: (1) an infinite slab of tissue with 
dielectric constant (here written as)  and electrical conductivity . 
Gauss’ Law gives the charge at the surface:  

-  

-  as solutions to .  

- We solve for the coefficients of this solution as 
 

-  

- Importantly, assume 60 Hz, dielectric constant 106, membrane 
response time of 1 microsecond, we arrive at  
(a tiny number).

κ σ

−ϵ0E0cosωt + κϵ0E1(t) = σq(t)
dE1

dt
+

σ
κϵ0

E1 = −
ω
κ

E0sinωt → Asinωt + Bcosωt E1

A = −
ωτt

κ(1 + ω2τ2
t )

E0 ≈ −
ωϵ0

σ
E0

B = − ωτtA = −
(ωτt)2

κ(1 + ω2τ2
t )

E0 ≈ 0

E1 ≈ A ≈ 33 * 10−9E0
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9.10.2.3 Laboratory Studies
The many laboratory studies were also reviewed by Moulder.
He concluded:

Power-frequency fields show little evidence of the type of effects
on cells, tissues or animals that point towards their being a cause of
cancer, or to their contributing to cancer. In fact, the existing labo-
ratory data provides strong evidence that power-frequency fields of
the magnitude to which people are exposed are not carcinogenic.6

9.10.2.4 Reviews and Panel Reports
Reviews by Moulder and Foster (1995, 1999) find that the
association between power-frequency fields and cancer is
weak7 for magnetic fields and even weaker for electric
fields. Carstensen (1995) and Bren (1995) reach similar
conclusions.

A report by a committee of the National Research Council
concludes that

the current body of evidence does not show that exposure to these
fields presents a human-health hazard.... The committee reviewed
residential exposure levels to electric and magnetic fields, evaluated
the available epidemiological studies, and examined laboratory in-
vestigations that used cells, isolated tissues, and animals. (National
Research Council (1997), p. 2)

There is no convincing evidence that exposure to 60-Hz elec-
tric and magnetic fields causes cancer in animals. . . . There is no
evidence of any adverse effects on reproduction or development in
animals, particularly mammals, from exposure to power-frequency
50- or 60-Hz electric or magnetic fields. (National Research Council
1997, p. 7).

9.10.2.5 Electric Fields in the Body
We now review some of the basic principles that govern the
interaction of electric and magnetic fields with the body.
One of the important principles is the relationship between
the electric field in air and the field within the body, which
is a conductor. A simple model that shows how this cou-
pling takes place is the one-dimensional problem shown
in Fig. 9.18. An infinite slab of tissue has dielectric con-
stant κ and conductivity σ . In the air perpendicular to the
surface of the slab is an external oscillating electric field
E(t) = E0 cos ωt . We assume that the dielectric constant is
independent of frequency and accounts for the polarization

6 Foster (1996) reviewed many of the laboratory studies and described
cases where subtle cues meant the observers were not making truly
“blind” observations. Though not directly relevant to the issue under
discussion here, a classic study by Tucker and Schmitt (1978) at the
University of Minnesota is worth noting. They were seeking to detect
possible human perception of 60-Hz magnetic fields. There appeared
to be an effect. For 5 years they kept providing better and better isola-
tion of the subject from subtle auditory clues. With their final isolation
chamber, none of the 200 subjects could reliably perceive whether the
field was on or off. Had they been less thorough and persistent, they
would have reported a positive effect that does not exist.
7 That is, the carcinogenic effects are in International Association for
Research on Cancer group 2B (possibly carcinogenic), a group that
includes coffee and pickled vegetables.
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Fig. 9.18 An infinite slab of tissue is immersed in an oscillating
electric field of amplitude E0 in air

of the tissue. An ionic current flows and causes free charge
per unit area ±σq to accumulate on the surfaces of the slab.
Within the slab, the field is E1(t) and the current density is
j = σE1. Gauss’s law (Eq. 6.21b) applied to either surface
gives

−ε0E0 cos ωt + κε0E1(t) = σq(t). (9.66)

Conservation of free charge at the surface requires that8

σE1 = j = −
dσq

dt
. (9.67)

If we differentiate Eq. 9.66 and combine it with Eq. 9.67, we
obtain

dE1

dt
+

σ

κε0
E1 = −

ω

κ
E0 sin ωt. (9.68)

The factor κε0/σ is a characteristic of the tissue and has
the dimensions of time. We will call it τt .

9 Typical tissue
conductivity is about 0.1 S m−1. We must be careful about
the value of the dielectric constant. We have used a value of
80 for water. However, tissue is much more complex than
pure water and there are several effects that alter the dielec-
tric constant (Foster and Schwan 1996). It takes time for both
the polarization charges and conducting ions to move. As a
result, both the conductivity and the dielectric constant of tis-
sue depend on the frequency of the applied electric field and
in fact are not independent of one another (see Foster and
Schwan 1996, especially pp. 31–41). Several effects change

8 Readers who are familiar with the concepts of reactance and complex
impedance must be frustrated because we have not used them. The rea-
son is pedagogic. Because many in our intended audience may have had
only one year of calculus, we want to avoid the use of complex num-
bers. In Chap. 11 we introduce them as a parallel notation. They are
widely used in the image reconstruction described in Chap. 12.
9 Recall that the membrane time constant τ was used in Eq. 6.40. The
values of conductivity or resistivity and dielectric constant are different
in this case.

σE1 = j = −
dσq

dt
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Fig. 9.19 The electric fields in and around a spherical cell. The cell
has radius a and membrane thickness b. The field far from the cell has
an amplitude E1

the conductivity and dielectric constant as a function of fre-
quency. At power-line frequencies, the dominant effect is the
slight movement of the counterions and charge in the double
layer at a cell membrane in response to the applied electric
field. As a result, κ ≈ 106 and τt = 9.1 × 10−5 s.

We try a solution to Eq. 9.68 of the form E1(t) =
A sin ωt + B cos ωt . It satisfies the equation if

A = −
ωτt

κ(1 + ω2τ 2
t )

E0 ≈ −
ωε0

σ
E0,

B = −ωτtA = −
(ωτt )

2

κ(1 + ω2τ 2
t )

E0 ≈ 0.

(9.69)

For 60 Hz and a dielectric constant of 106, A = 33×10−9E0,
B = 1.1 × 10−9E0. The amplitude of the field in tissue is
E1 ≈ A:

E1 ≈ 33 × 10−9E0. (9.70)

The field in air is reduced by a factor of about 3 × 10−8

in tissue because the tissue is a good conductor. The total
reduction is nearly the same for a dielectric constant of 80,
as can be seen from the fact that the approximate form for A

does not depend on κ .

9.10.2.6 Electric Fields in a Spherical Cell
Another important factor is the electric fields that exist in
and near a cell. Consider a spherical cell with inner radius a

and membrane thickness b immersed in an infinite conduct-
ing medium in which there is an electric field E1 far from
the cell. We saw above that a field in air of E0 = 300 V m−1

is reduced to E1 = 10−5 V m−1 in the conducting medium.
The potential can be determined analytically by solving Pois-
son’s equation (with zero charge density) in the three regions

Table 9.5 Comparison of the signal in a cell to thermal noise for an
applied electric field in air E0 = 300 V m−1. From Eq. 9.71, E1 =
10−5 V m−1. T = 300 K. z = 10. d = 10−5 m

Model Outside the
cell

In the cell
membrane

Inside the cell

E (V m−1) 1.0 × 10−5 1.62 × 10−2 5.40 × 10−10

kBT /eE (m) 2.57 × 103 1.59 4.79 × 107

zeEd/kBT 3.9 × 10−8 6.3 × 10−5 2.1 × 10−12

and matching boundary conditions much as we did to ob-
tain Eq. 9.67. The results, valid for slowly varying applied
fields such as a 50 or 60-Hz power line field, are shown in
Fig. 9.19.10 Only the amplitude of the electric field is shown.
Assume the conductivities σ of the extracellular and intracel-
lular fluids are the same, that a = 10 µm and b = 6 nm, and
that σmembrane = 2.4×10−8σ . The important features of this
solution are that the field just outside the cell is roughly the
same as the field far away, the field inside the membrane is
magnified by a large factor (a/b), and the field inside the
cell is multiplied by a very small factor (aσmembrane/bσ ).
Thus, the cell membrane shields the intracellular space from
extracellular electric fields, so these fields are not likely to di-
rectly affect cell organelles and important biomolecules such
as DNA. This is reflected in the last line of Table 9.5.

9.10.3 Electrical Interactions and Noise

If an organism is affected in some way by an external field,
then it can be regarded as a detector of that field. The external
field can therefore be thought of as a signal. To be detected,
the signal must be greater than the noise. The noise can be
either thermal (Johnson) noise, shot noise, or noise from the
electric currents that normally flow in the body due to nerve
conduction and muscle contraction. To have a signal that is
not masked by Johnson noise, we must have an electric field
E such that

zev

kBT
=

zeEd

kBT
> 1, (9.71)

where z is the valence of an effective charge that moves a
distance d in the electric field E. Table 9.5 shows the result
of a calculation using a field in air of 300 V m−1. We use a
value z = 10. For d, we use the diameter of the cell, d =
10 µm (though for the membrane perhaps the much smaller
thickness of the cell membrane should be used). The values
of zeEd/kBT are very small.

One proposal to overcome this signal-to-noise problem is
that the biological effect is due to the averaging of the field
over many cells or over time. This was first proposed by
Weaver and Astumian (1990), and a specific model has been

10 Calculated using equations in Polk (1995), p. 62.



- Let’s consider two simple models: (1) an infinite slab of tissue with 
dielectric constant (here written as)  and electrical conductivity . 
Gauss’ Law gives the charge at the surface:  

-  

-  as solutions to .  

- We solve for the coefficients of this solution as 
 

-  

- Importantly, assume 60 Hz, dielectric constant 106, membrane 
response time of 1 microsecond, we arrive at  
(a tiny number).

κ σ

−ϵ0E0cosωt + κϵ0E1(t) = σq(t)
dE1

dt
+

σ
κϵ0

E1 = −
ω
κ

E0sinωt → Asinωt + Bcosωt E1

A = −
ωτt

κ(1 + ω2τ2
t )

E0 ≈ −
ωϵ0

σ
E0

B = − ωτtA = −
(ωτt)2

κ(1 + ω2τ2
t )

E0 ≈ 0

E1 ≈ A ≈ 33 * 10−9E0
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9.10.2.3 Laboratory Studies
The many laboratory studies were also reviewed by Moulder.
He concluded:

Power-frequency fields show little evidence of the type of effects
on cells, tissues or animals that point towards their being a cause of
cancer, or to their contributing to cancer. In fact, the existing labo-
ratory data provides strong evidence that power-frequency fields of
the magnitude to which people are exposed are not carcinogenic.6

9.10.2.4 Reviews and Panel Reports
Reviews by Moulder and Foster (1995, 1999) find that the
association between power-frequency fields and cancer is
weak7 for magnetic fields and even weaker for electric
fields. Carstensen (1995) and Bren (1995) reach similar
conclusions.

A report by a committee of the National Research Council
concludes that

the current body of evidence does not show that exposure to these
fields presents a human-health hazard.... The committee reviewed
residential exposure levels to electric and magnetic fields, evaluated
the available epidemiological studies, and examined laboratory in-
vestigations that used cells, isolated tissues, and animals. (National
Research Council (1997), p. 2)

There is no convincing evidence that exposure to 60-Hz elec-
tric and magnetic fields causes cancer in animals. . . . There is no
evidence of any adverse effects on reproduction or development in
animals, particularly mammals, from exposure to power-frequency
50- or 60-Hz electric or magnetic fields. (National Research Council
1997, p. 7).

9.10.2.5 Electric Fields in the Body
We now review some of the basic principles that govern the
interaction of electric and magnetic fields with the body.
One of the important principles is the relationship between
the electric field in air and the field within the body, which
is a conductor. A simple model that shows how this cou-
pling takes place is the one-dimensional problem shown
in Fig. 9.18. An infinite slab of tissue has dielectric con-
stant κ and conductivity σ . In the air perpendicular to the
surface of the slab is an external oscillating electric field
E(t) = E0 cos ωt . We assume that the dielectric constant is
independent of frequency and accounts for the polarization

6 Foster (1996) reviewed many of the laboratory studies and described
cases where subtle cues meant the observers were not making truly
“blind” observations. Though not directly relevant to the issue under
discussion here, a classic study by Tucker and Schmitt (1978) at the
University of Minnesota is worth noting. They were seeking to detect
possible human perception of 60-Hz magnetic fields. There appeared
to be an effect. For 5 years they kept providing better and better isola-
tion of the subject from subtle auditory clues. With their final isolation
chamber, none of the 200 subjects could reliably perceive whether the
field was on or off. Had they been less thorough and persistent, they
would have reported a positive effect that does not exist.
7 That is, the carcinogenic effects are in International Association for
Research on Cancer group 2B (possibly carcinogenic), a group that
includes coffee and pickled vegetables.
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Fig. 9.18 An infinite slab of tissue is immersed in an oscillating
electric field of amplitude E0 in air

of the tissue. An ionic current flows and causes free charge
per unit area ±σq to accumulate on the surfaces of the slab.
Within the slab, the field is E1(t) and the current density is
j = σE1. Gauss’s law (Eq. 6.21b) applied to either surface
gives

−ε0E0 cos ωt + κε0E1(t) = σq(t). (9.66)

Conservation of free charge at the surface requires that8

σE1 = j = −
dσq

dt
. (9.67)

If we differentiate Eq. 9.66 and combine it with Eq. 9.67, we
obtain

dE1

dt
+

σ

κε0
E1 = −

ω

κ
E0 sin ωt. (9.68)

The factor κε0/σ is a characteristic of the tissue and has
the dimensions of time. We will call it τt .

9 Typical tissue
conductivity is about 0.1 S m−1. We must be careful about
the value of the dielectric constant. We have used a value of
80 for water. However, tissue is much more complex than
pure water and there are several effects that alter the dielec-
tric constant (Foster and Schwan 1996). It takes time for both
the polarization charges and conducting ions to move. As a
result, both the conductivity and the dielectric constant of tis-
sue depend on the frequency of the applied electric field and
in fact are not independent of one another (see Foster and
Schwan 1996, especially pp. 31–41). Several effects change

8 Readers who are familiar with the concepts of reactance and complex
impedance must be frustrated because we have not used them. The rea-
son is pedagogic. Because many in our intended audience may have had
only one year of calculus, we want to avoid the use of complex num-
bers. In Chap. 11 we introduce them as a parallel notation. They are
widely used in the image reconstruction described in Chap. 12.
9 Recall that the membrane time constant τ was used in Eq. 6.40. The
values of conductivity or resistivity and dielectric constant are different
in this case.

σE1 = j = −
dσq

dt
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Fig. 9.19 The electric fields in and around a spherical cell. The cell
has radius a and membrane thickness b. The field far from the cell has
an amplitude E1

the conductivity and dielectric constant as a function of fre-
quency. At power-line frequencies, the dominant effect is the
slight movement of the counterions and charge in the double
layer at a cell membrane in response to the applied electric
field. As a result, κ ≈ 106 and τt = 9.1 × 10−5 s.

We try a solution to Eq. 9.68 of the form E1(t) =
A sin ωt + B cos ωt . It satisfies the equation if

A = −
ωτt

κ(1 + ω2τ 2
t )

E0 ≈ −
ωε0

σ
E0,

B = −ωτtA = −
(ωτt )

2

κ(1 + ω2τ 2
t )

E0 ≈ 0.

(9.69)

For 60 Hz and a dielectric constant of 106, A = 33×10−9E0,
B = 1.1 × 10−9E0. The amplitude of the field in tissue is
E1 ≈ A:

E1 ≈ 33 × 10−9E0. (9.70)

The field in air is reduced by a factor of about 3 × 10−8

in tissue because the tissue is a good conductor. The total
reduction is nearly the same for a dielectric constant of 80,
as can be seen from the fact that the approximate form for A

does not depend on κ .

9.10.2.6 Electric Fields in a Spherical Cell
Another important factor is the electric fields that exist in
and near a cell. Consider a spherical cell with inner radius a

and membrane thickness b immersed in an infinite conduct-
ing medium in which there is an electric field E1 far from
the cell. We saw above that a field in air of E0 = 300 V m−1

is reduced to E1 = 10−5 V m−1 in the conducting medium.
The potential can be determined analytically by solving Pois-
son’s equation (with zero charge density) in the three regions

Table 9.5 Comparison of the signal in a cell to thermal noise for an
applied electric field in air E0 = 300 V m−1. From Eq. 9.71, E1 =
10−5 V m−1. T = 300 K. z = 10. d = 10−5 m

Model Outside the
cell

In the cell
membrane

Inside the cell

E (V m−1) 1.0 × 10−5 1.62 × 10−2 5.40 × 10−10

kBT /eE (m) 2.57 × 103 1.59 4.79 × 107

zeEd/kBT 3.9 × 10−8 6.3 × 10−5 2.1 × 10−12

and matching boundary conditions much as we did to ob-
tain Eq. 9.67. The results, valid for slowly varying applied
fields such as a 50 or 60-Hz power line field, are shown in
Fig. 9.19.10 Only the amplitude of the electric field is shown.
Assume the conductivities σ of the extracellular and intracel-
lular fluids are the same, that a = 10 µm and b = 6 nm, and
that σmembrane = 2.4×10−8σ . The important features of this
solution are that the field just outside the cell is roughly the
same as the field far away, the field inside the membrane is
magnified by a large factor (a/b), and the field inside the
cell is multiplied by a very small factor (aσmembrane/bσ ).
Thus, the cell membrane shields the intracellular space from
extracellular electric fields, so these fields are not likely to di-
rectly affect cell organelles and important biomolecules such
as DNA. This is reflected in the last line of Table 9.5.

9.10.3 Electrical Interactions and Noise

If an organism is affected in some way by an external field,
then it can be regarded as a detector of that field. The external
field can therefore be thought of as a signal. To be detected,
the signal must be greater than the noise. The noise can be
either thermal (Johnson) noise, shot noise, or noise from the
electric currents that normally flow in the body due to nerve
conduction and muscle contraction. To have a signal that is
not masked by Johnson noise, we must have an electric field
E such that

zev

kBT
=

zeEd

kBT
> 1, (9.71)

where z is the valence of an effective charge that moves a
distance d in the electric field E. Table 9.5 shows the result
of a calculation using a field in air of 300 V m−1. We use a
value z = 10. For d, we use the diameter of the cell, d =
10 µm (though for the membrane perhaps the much smaller
thickness of the cell membrane should be used). The values
of zeEd/kBT are very small.

One proposal to overcome this signal-to-noise problem is
that the biological effect is due to the averaging of the field
over many cells or over time. This was first proposed by
Weaver and Astumian (1990), and a specific model has been

10 Calculated using equations in Polk (1995), p. 62.



- The diffusion equation looks like this:  

- Generally known as Fick’s First Law, with units of /
m2s for the current 

- If , no diffusion. 

- If not, then movement of particles (ions) occurs from 
higher concentration to lower concentration. 

- Fick’s law is one of many forms of transport 
equations. 

jx = − D
∂C
∂x

∂C/∂x = 0
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Table 4.3 Various forms of the transport equation

Substance flowing Equation Units of j Units of the constant

Particles js = −D
∂C

∂x
m−2 s−1 m2 s−1

Mass jm = −D
∂ρ

∂x
kg m−2 s−1 m2 s−1

Heat jH = −κ
∂T

∂x
J m−2 s−1 or kg s−3 J K−1 m−1 s−1

Electric charge je = −σ
∂V

∂x
C m−2 s−1 C m−1 s−1 V−1 or Ω−1 m−1

Viscosity (y component of momentum transported in the x direction) jp = −η
∂vy

∂x
N m−2 or kg m−1 s−2 kg m−1 s−1 or Pa s

of three equations for the three components by defining x̂, ŷ,
and ẑ to be unit vectors along the axes. Then

jx x̂ + jy ŷ + jzẑ

= −D

(
∂C

∂x
x̂ +

∂C

∂y
ŷ +

∂C

∂z
ẑ

)
.

We have created a vector that depends on C(x, y, z, t) by
performing the indicated differentiations on C and multiply-
ing the results by the appropriate unit vectors. This vector
function is the gradient of C in three dimensions:

grad C = ∇C =
∂C

∂x
x̂ +

∂C

∂y
ŷ +

∂C

∂z
ẑ. (4.19)

Fick’s first law with this notation is

j = −D grad C = −D ∇C. (4.20)

Remember that this is simply shorthand for three equations
like Eq. 4.18a. If you feel a need to review vector calculus,
which deals with the divergence and gradient, an excellent
text is the one by Schey (2004).

4.7 The Einstein Relationship Between
Diffusion and Viscosity

Before we can apply Fick’s first law to real problems, we
must determine the value of the diffusion constant D. The
experimental determination of D is often based on Fick’s
second law of diffusion, which combines the first law with
the equation of continuity and is discussed in the next sec-
tion. It is closely related to the viscosity, as was first pointed
out by Albert Einstein. This is not surprising, since diffusion
is caused by the random motion of the particles under the
bombardment of neighboring atoms, and viscous drag is also
caused by the bombardment by neighboring atoms. What is
remarkable is that a general relationship between them can

Fig. 4.8 Particles drifting under the influence of a downward force Fext

be deduced quite easily by imagining just the right sort of
experiment.

Consider a collection of particles uniformly suspended in
a fluid at rest. Imagine that each particle is suddenly sub-
jected to an external force Fext (such as gravity) that acts in
the −y direction, as shown in Fig. 4.8. The particles will all
begin to drift downward, speeding up until the upward vis-
cous force on them balances the external force: Fext − β v =
0. In terms of magnitudes, Fext = βv.

Because these particles are all moving downward, there
is a downward flux density. With reference to Fig. 4.9, the
number of particles crossing area S in time (t will be those
within the cylinder of height v(t . That number is the con-
centration times the volume (Sv(t). Dividing by S and (t

gives

jdrift = −vC(y)ŷ.

As the particles move down, they deplete the upper region
of the fluid and cause a concentration gradient. This concen-
tration gradient causes an upward diffusion of particles, with
a flux density given by

jdiff = −D
∂C

∂y
ŷ.



- An example to solve the Fick’s Law. 

- A downward flux density, from the forces , means 
that the number of particles crossing area  in  will be those 
within the cylinder of height . The concentration then is  

- . 

-  

- Equating these two means the system is then at equilibrium, gives 

-  

- From this, we find that the diffusion constant and the velocity are 
related,  

- So far, the solutions only require the the velocities be small 
enough so that a linear approximation for Fick’s law and viscous 
forces are valid. If the diffusing particles are large enough to allow 
Stoke’s law, then  with .

Fex − βv̄ = 0
S Δt

v̄Δt Sv̄Δt
jdrift = − v̄C(y) ̂y

jdiff = − D
∂C
∂y

̂y

C(y) = C(0)e−Fexty/kBT

v̄ = DFext /kBT

β = 6πηa D =
kBT

6πηa
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Table 4.3 Various forms of the transport equation

Substance flowing Equation Units of j Units of the constant

Particles js = −D
∂C

∂x
m−2 s−1 m2 s−1

Mass jm = −D
∂ρ

∂x
kg m−2 s−1 m2 s−1

Heat jH = −κ
∂T

∂x
J m−2 s−1 or kg s−3 J K−1 m−1 s−1

Electric charge je = −σ
∂V

∂x
C m−2 s−1 C m−1 s−1 V−1 or Ω−1 m−1

Viscosity (y component of momentum transported in the x direction) jp = −η
∂vy

∂x
N m−2 or kg m−1 s−2 kg m−1 s−1 or Pa s

of three equations for the three components by defining x̂, ŷ,
and ẑ to be unit vectors along the axes. Then

jx x̂ + jy ŷ + jzẑ

= −D

(
∂C

∂x
x̂ +

∂C

∂y
ŷ +

∂C
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ẑ
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.

We have created a vector that depends on C(x, y, z, t) by
performing the indicated differentiations on C and multiply-
ing the results by the appropriate unit vectors. This vector
function is the gradient of C in three dimensions:

grad C = ∇C =
∂C

∂x
x̂ +

∂C

∂y
ŷ +

∂C

∂z
ẑ. (4.19)

Fick’s first law with this notation is

j = −D grad C = −D ∇C. (4.20)

Remember that this is simply shorthand for three equations
like Eq. 4.18a. If you feel a need to review vector calculus,
which deals with the divergence and gradient, an excellent
text is the one by Schey (2004).

4.7 The Einstein Relationship Between
Diffusion and Viscosity

Before we can apply Fick’s first law to real problems, we
must determine the value of the diffusion constant D. The
experimental determination of D is often based on Fick’s
second law of diffusion, which combines the first law with
the equation of continuity and is discussed in the next sec-
tion. It is closely related to the viscosity, as was first pointed
out by Albert Einstein. This is not surprising, since diffusion
is caused by the random motion of the particles under the
bombardment of neighboring atoms, and viscous drag is also
caused by the bombardment by neighboring atoms. What is
remarkable is that a general relationship between them can

Fig. 4.8 Particles drifting under the influence of a downward force Fext

be deduced quite easily by imagining just the right sort of
experiment.

Consider a collection of particles uniformly suspended in
a fluid at rest. Imagine that each particle is suddenly sub-
jected to an external force Fext (such as gravity) that acts in
the −y direction, as shown in Fig. 4.8. The particles will all
begin to drift downward, speeding up until the upward vis-
cous force on them balances the external force: Fext − β v =
0. In terms of magnitudes, Fext = βv.

Because these particles are all moving downward, there
is a downward flux density. With reference to Fig. 4.9, the
number of particles crossing area S in time (t will be those
within the cylinder of height v(t . That number is the con-
centration times the volume (Sv(t). Dividing by S and (t

gives

jdrift = −vC(y)ŷ.

As the particles move down, they deplete the upper region
of the fluid and cause a concentration gradient. This concen-
tration gradient causes an upward diffusion of particles, with
a flux density given by

jdiff = −D
∂C

∂y
ŷ.

Particles drifting under the influence of a 
downward force Fext

94 4 Transport in an Infinite Medium

Fig. 4.9 Calculating the fluence rate of particles drifting downward

Equilibrium will be established when these two flux
densities are equal in magnitude:|jdrift| = |jdiff|,

|vC(y)| =
∣∣∣∣D

∂C

∂y

∣∣∣∣ . (4.21)

But equilibrium means that the particles have a Boltzmann
distribution in y, because their potential energy increases
with y (work is required to lift them in opposition to
Fext). For a constant Fext independent of y, the energy is
u(y) = Fexty, where Fext is the magnitude of the force. The
concentration is

C(y) = C(0)e−Fexty/kBT .

Therefore
∂C

∂y
= −

Fext

kBT
C(y).

Inserting this in Eq. 4.21 gives v = DFext/kBT or D =
vkBT /Fext. In equilibrium, the magnitude of Fext is equal
to the magnitude of the viscous force f. Therefore D =
kBT v/f . Since the viscous force is proportional to the
velocity, |f | = |βv|,

D =
kBT

β
. (4.22)

The derivation of this equation required only that the ve-
locities be small enough so that the linear approximations for
Fick’s first law and the viscous force are valid. It is indepen-
dent of the nature of the particle or its size. If in addition
the diffusing particles are large enough so that Stokes’ law is
valid, then β = 6πηa and

D =
kBT

6πηa
. (4.23)

The diffusion constant is inversely proportional to the fluid
viscosity and the radius of the particle.

Combining Eqs. 4.18b and 4.22 shows that in terms of the
chemical potential,

jsx = −
Cs

β

∂µs

∂x
.

Fig. 4.10 Viscosity of water at various temperatures. (Data are from
Weast 1972, p. F-36)

Sometimes minus the gradient of the chemical potential is
called the driving force. To see why, note that for solvent
drag, js = Csv, so βv = −∂µs/∂x is the driving force.

The viscosity of water varies rapidly with temperature, as
shown in Fig. 4.10. These values of viscosity and Eq. 4.23
have been used to calculate the solid lines for D vs a shown
in Fig. 4.11. Various experimental values are also shown. The
diffusion constant increases rapidly with temperature, so that
care must be taken to specify the temperature at which the
data are obtained. Since not all the molecules are spherical,
there is some uncertainty in the value of the particle radius a.

Figure 4.12 is a plot of D for particles diffusing in water
at 20 ◦C (293 K) vs. molecular weight M . Although the solid
line provides a rough estimate of D if M is known, scatter
is considerable because of varying particle shape. DNA lies
a factor of 10 below the curve, presumably because it is par-
tially uncoiled and presents a larger size than other molecules
of comparable molecular weight.

It is possible to measure the self-diffusion of water in wa-
ter by using a few water molecules in which one hydrogen
atom is radioactive and measuring how they diffuse. Water
has an unusually large self-diffusion constant.9

9 For self-diffusion (such as radioactively tagged water in water), a hy-
drodynamic calculation shows that β = 4πηa instead of 6πηa (Bird
et al. 1960, p. 514ff.).
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If all of the molecules shown had the same density, then
their radius would depend on M1/3 and the line would have
a slope of − 1

3 . The slope is steeper than this, suggest-
ing that the molecules are larger for large M than constant
density would predict. This increase in size may be par-
tially attributable to water of hydration. The precise values
of diffusion constants depend on many details of the par-
ticle structure; however, the lines in Fig. 4.12 provide an
order-of-magnitude estimate.

The assumption that the flux depends linearly on the
concentration gradient was an approximation. The diffusion
constant is found, as a result, to be somewhat concentration
dependent.

4.8 Fick’s Second Law of Diffusion

Fick’s first law of diffusion, Eq. 4.18a, is the observation that
for small concentration gradients, the diffusive flux density is
proportional to the concentration gradient: jx = −D ∂C/∂x.

If this is differentiated, one obtains ∂jx/∂x = −D ∂2C/∂x2.
Similar equations hold for the y and z directions. The
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equation of continuity, Eq. 4.2, is

−
∂C

∂t
=

∂jx

∂x
+

∂jy

∂y
+

∂jz

∂z
.

If we combine these two equations, we get Fick’s second law

of diffusion, also known as the diffusion equation:

∂C

∂t
= D

(
∂2C

∂x2 +
∂2C

∂y2 +
∂2C

∂z2

)
. (4.24)

The first law relates the flux of particles to the concentra-
tion gradient. The second law tells how the concentration at
a point changes with time. It combines the first law and the
equation of continuity. The function on the right-hand side of
Eq. 4.24,

∂2C

∂x2 +
∂2C

∂y2 +
∂2C

∂z2 ,

is called the Laplacian of C. It is often abbreviated as ∇2C

(read “del squared C”) in American textbooks or "C in
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If all of the molecules shown had the same density, then
their radius would depend on M1/3 and the line would have
a slope of − 1

3 . The slope is steeper than this, suggest-
ing that the molecules are larger for large M than constant
density would predict. This increase in size may be par-
tially attributable to water of hydration. The precise values
of diffusion constants depend on many details of the par-
ticle structure; however, the lines in Fig. 4.12 provide an
order-of-magnitude estimate.

The assumption that the flux depends linearly on the
concentration gradient was an approximation. The diffusion
constant is found, as a result, to be somewhat concentration
dependent.

4.8 Fick’s Second Law of Diffusion

Fick’s first law of diffusion, Eq. 4.18a, is the observation that
for small concentration gradients, the diffusive flux density is
proportional to the concentration gradient: jx = −D ∂C/∂x.

If this is differentiated, one obtains ∂jx/∂x = −D ∂2C/∂x2.
Similar equations hold for the y and z directions. The
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equation of continuity, Eq. 4.2, is

−
∂C

∂t
=

∂jx

∂x
+

∂jy

∂y
+

∂jz

∂z
.

If we combine these two equations, we get Fick’s second law

of diffusion, also known as the diffusion equation:

∂C

∂t
= D

(
∂2C

∂x2 +
∂2C

∂y2 +
∂2C

∂z2

)
. (4.24)

The first law relates the flux of particles to the concentra-
tion gradient. The second law tells how the concentration at
a point changes with time. It combines the first law and the
equation of continuity. The function on the right-hand side of
Eq. 4.24,

∂2C

∂x2 +
∂2C

∂y2 +
∂2C

∂z2 ,

is called the Laplacian of C. It is often abbreviated as ∇2C

(read “del squared C”) in American textbooks or "C in



- The diffusion equation looks like this:  

- We can use this equation to understand ion movement in solutions, for example, where 
the solute particles move by diffusion. The average velocity of these particles is 
obtained from either being at rest with respect to a moving solution, i.e. solvent drag, or 
having an external force such as gravity or an electric field dragging the solute particles 
in the solution. 

- This adds a term to the diffusion equation, . 

- If an external force  acts on the particles, the velocity 
. 

- The particle current density becomes .

jx = − D
∂C
∂x

jx = − D
∂C
∂x

+ CVsolut

F = zeE
Vsolut − Vsolvnent = zeE/(kBT/D)

js = − D
dC
dx

+ Cjv + CzeE
D

kBT

DIFFUSION: POTENTIALS AND TRANSPORT



- We consider the case where there is no bulk solution flow, the Nernst-Planck equation:  

- . 

- The physics here to intuitively understand is that diffusion always occurs towards the region of lower 
concentration, while for positive charge the term is in the direction of the electric field . 

- Our initial conditions are current density in bulk solution with , . 

- Then, . 

- This can be rewritten in terms of the conductivity, as defined from  

-

js = − D
dC
dx

+ CzeE
D

kBT

Vsolut E
x = 0 v(x) = 0; x = L, v(x) = v

j = −
z2e2DCS

kBTL
v
S

= −
G(C)

S
v

G = σS/L = 1/R = S/ρL

σ =
1
ρ

=
z2e2DC

kBT

DIFFUSION: POTENTIALS AND TRANSPORT



- Some ion conductivities 

- σ =
1
ρ

=
z2e2DC

kBT
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from 80 to 1 at about 0.23 nm. A more accurate model pre-
dicts similar behavior, but with a more gradual transition of
the dielectric constant from 80 to 1.3

Close to an ion the potential is larger than q/(4πε0κ r).
This changes the Born charging energy (Eq. 6.22), and the
free energy change as an ion dissolves in a solvent (Bock-
ris and Reddy 1970, Chap. 2). Also, close to an ion, the
continuum approximation breaks down.

9.5 Ion Movement in Solution: The
Nernst–Planck Equation

Solute particles can move by diffusion. They can also move
if they have an average velocity Vsolute. There are two ways
they can acquire an average velocity. The first is if they are
at rest on average with respect to a moving solution. This
is called solvent drag. The second is for the solute particles
to be dragged through the solution by an external force that
acts on them, such as gravity or an electric force, balanced
by the viscous force on the particles. In both cases, number
per unit area per unit time crossing a plane is CVsolute. The
solute particle fluence rate (particle current density) due to
both diffusion and the solute velocity in the x direction is4

(Sect. 4.12)

js = −D
dC

dx
+ CVsolute. (9.34)

Suppose that an external force F = zeE acts on the so-
lute particles in the x direction. They will be accelerated
until the viscous drag on them is equal to the magnitude
of F . But we saw in Chap. 4 that the viscous drag is f =
−β(Vsolute − Vsolvent) where Vsolute − Vsolvent is the relative
velocity of the solute through the solvent. Coefficient β is
related to the diffusion constant by β = kBT /D. Therefore,
the particles are no longer accelerated when

Vsolute − Vsolvent = zeE/β. (9.35)

Equation 9.34 can be rewritten as

js = −D
dC

dx
+ C [Vsolvent + (Vsolute − Vsolvent)] .

Now Vsolvent is the volume of solvent that flows per unit area
per unit time and is just jv . With this substitution and using
Eq. 9.35, the particle current density is

js = −D
dC

dx
+ Cjv + CzeE

D

kBT
. (9.36)

3 A more sophisticated model for the alignment of the electric dipoles in
the electric field is analogous to that for magnetic moments in Sect. 8.3.
4 We use x for the distance in the direction parallel to E because z is
used for valence.

Table 9.4 Conductivities of ions at various concentrations at 25◦C,
calculated using Eq. 9.39. Diffusion constants for each ion are from
Hille (2001, p. 317). Concentrations are typical of mammalian nerve
and are from Hille (2001, p. 17). The conductivities of each species add,
and ρ = 1/σ . Larger ions with very small diffusion constants make the
solutions electrically neutral

D C σ ρ

(m2s−1) (mmol l−1) (S m−1) (Ω m)
Extracellular squid axon

Na 1.33 × 10−9 145 0.723
K 1.96 × 10−9 4 0.029
Cl 2.03 × 10−9 123 0.936

1.688 0.592
Intracellular squid axon

Na 1.33 × 10−9 12 0.060
K 1.96 × 10−9 155 1.139
Cl 2.03 × 10−9 4.2 0.032

1.231 0.812

The first term represents solute motion due to diffusion, the
second represents solute dragged along with the bulk flow of
the solution (solvent drag), and the third represents drift due
to the applied electric field.

We will consider only the case in which there is no bulk
flow of solution, so jv = 0. The equation then reduces to the
Nernst–Planck equation:

js = −D
dC

dx
+

zeE

kBT
DC. (9.37)

Diffusion is always toward the region of lower concentration,
while for positive charge the Vsolute term is in the direction
of E. For negative charges, it is in the opposite direction.

Consider the current density in bulk solution between
planes at x = 0 where v(x) = 0 and x = L where
v(x) = v. If there is no concentration gradient and the poten-
tial changes uniformly, then E = −dv/dx = −v/L points
in the negative x direction, and the particle current density
is js = −zeDCv/kBT L. The electrical current density j is
obtained by multiplying js by the charge on each particle, ze:

j = −
z2e2DCS

kBT L

v

S
= −

G(C)

S
v. (9.38)

If v(L) > v(0), the current is to the left and is negative.
Recalling that G = σS/L = 1/R = S/ρL, we obtain the
conductivity in the bulk solution

σ =
1
ρ

=
z2e2DC

kBT
. (9.39)

If several ion species carry current and can be assumed to
move independently, then the total conductivity is the sum
of the conductivities for each ion. Table 9.4 shows con-
tributions to the conductivity for various species at typical
concentrations.



- Some ion conductivities 

- σ =
1
ρ

=
z2e2DC

kBT
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Fig. 9.12 Steady-state potassium current and peak sodium current for a squid axon subject to a voltage clamp vs. the transmembrane potential
during the clamp. These are not real data, but were generated using the Hodgkin–Huxley model. a Current density. b Current density divided by
the difference between the potential and the Nernst potential, to give the conductance per unit area. (see Eq. 6.61)

potassium. Calcium channels typically activate with depo-
larization. Since the concentration of calcium inside cells is
usually very small, the interior calcium concentration can in-
crease 20-fold in response to depolarization. This increase in
concentration can initiate a chemical reaction, for example,
to cause contraction of a muscle cell.

Chloride channels often have a large conductivity. The
chloride concentration ratio in some muscle cells is such that
the resting potential is close to the chloride Nernst potential.
As a result, small changes in the potential cause relatively
large chloride currents, which tend to stabilize the resting
potential.

The earliest voltage-clamp measurements were difficult to
sort out. Hodgkin and Huxley changed the concentration of
extracellular sodium, substituting impermeant choline ions,
to determine what part of the current was due to sodium
and what was due to potassium. Figure 9.12(a) shows typical
currents.

In the mid-1960s, various drugs were found that at very
small concentrations selectively block conduction of a par-
ticular ion species. We now know that these drugs bind to the
channels that conduct the ions. An example is tetrodotoxin

(TTX), which binds to sodium channels and blocks them,
making it a deadly poison.

The next big advance was patch-clamp recording (Ne-
her and Sakmann 1976). Micropipettes were sealed against
a cell membrane that had been cleaned of connective tis-
sue by treatment with enzymes. A very-high-resistance seal

Fig. 9.13 Opening of single K(Ca) channels. (From Pallotta et al.
(1981). Reprinted with permission from Nature (London))

resulted [(2–3)×107 Ω] that allowed one to see the open-
ing and closing of individual channels. For this work, Erwin
Neher and Bert Sakmann received the Nobel Prize in Phys-
iology or Medicine in 1991. Around 1980, Neher’s group
found a way to make even higher resistance (1010–1011 Ω)
seals that reduced the noise even further and allowed patches
of membrane to be torn from the cell while adhering to the
pipette (Hamill et al. 1981). The relationship of noise to
resistance will be discussed below.

The patch-clamp studies revealed that the pores open and
close randomly, as shown in Fig. 9.13. Thus, the Hodgkin–
Huxley model describes the average behavior of many pores,
not the kinetics of single pores. Note how the current through



- From impedance spectroscopy, characterization of organic material can be obtained. 
An example is that of human blood. 

- The basic model is a distributed element or constant phase element model with a 
capacitor like element with a reactance of the form  

-  with  the electric current 
frequency.
ZT =

1
( jω)PCT

= Rs +
RP

1 + RPCT( jω)P
j = − 1,ω = 2πf, f

DIELECTRIC SPECTROSCOPY (?)



- There is of course also a time dependence 
associated with understanding of Fick’s law, 
the 2nd law. 

-  

- The solution in 1D for the concentration in then  

-  

- We can check this by plugging in this formula 
and equating both sides.

−
∂C
∂t

= D(∇2C) = D(
∂2C
∂x2

+
∂2C
∂y2

+
∂2C
∂z2

)

C(x, t) =
N

2πσ(t)
e−x2/2σ2(t)
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Fig. 4.13 Spreading of particles by diffusion assuming D = 1

surface; each flux is proportional to the gradient of the con-
centration, so the buildup is proportional to the difference in
gradients or the second derivative.

In the problems at the end of this chapter, you will dis-
cover that diffusion of small particles through water for a
distance of 1 µm takes about 1 ms, and diffusion through
100 µm takes 1002 times as long, or 10 s. The times are
even longer for larger particles. Thus, diffusion is an effec-
tive mode of transport for distances comparable to the size
of a cell, but it is too slow for larger distances. This is why
multicelled organisms evolve circulatory systems.

4.9 Time-Independent Solutions

In this section, we develop general solutions for diffusion and
solvent drag when particles are conserved and the concentra-
tion and fluence rate are not changing with time. The system
is in the steady state. The continuity equation, Eq. 4.8, then
becomes div j = 0. We consider the solutions for C and j in
one, two, and three dimensions when the symmetry is such
that j depends on only one position coordinate, x or r . These
solutions are sometimes appropriate models for limited re-
gions of space. There is always some other region of space,
serving as a source or sink for the particles that are diffusing,
where the model does not apply.

The behavior of j can be deduced from the continuity
equation. In one dimension, such as flow in a pipe or between
two infinite planes, the continuity equation is

djx

dx
= 0, (4.28)

which has a solution jx = b1 where b1 is a constant. (The
subscript denotes the constant for the one-dimensional case.)

The total flux or current i is constant, so

jx =
i

S
, (4.29)

where S is the area perpendicular to the flow.
In two dimensions, we consider a problem with cylindri-

cal symmetry and consider only flow radially away from or
toward the z-axis. In that case, the equation in Table L.1 for
the divergence becomes

1
r

d

dr
(rjr ) = 0, (4.30)

from which
d

dr
(rjr ) = 0. (4.31)

This means that (rjr ) is constant, or

jr =
b2

r
. (4.32)

This is valid everywhere except along the z-axis, where there
is a source of particles and the divergence is not zero. The
total current i leaving a region of length L parallel to the z

axis is also constant,

jr =
i

2πLr
. (4.33)

In three dimensions with spherical symmetry, the radial
component of the divergence is

1
r2

d

dr
(r2jr ) = 0,

from which
d

dr
(r2jr ) = 0, (4.34)

so that

jr =
b3

r2 (4.35)

or

jr =
i

4πr2 . (4.36)

This is valid everywhere except at the origin, where there is
a source of particles.

These results depend only on continuity, time indepen-
dence, and the assumed symmetry. They are true for diffu-
sion, solvent drag, or any other process. Note the progression
in going to higher dimensions: in n dimensions rn−1jr is
constant.

Now consider how the concentration varies in the two
limiting cases of pure solvent drag and pure diffusion.
(Sect. 4.12 discusses what happens when both transport
modes are important.)

Spreading of particles by diffusion assuming D = 1 



- A general solution, for the concentration can be estimated (we’ll just show this slide) 
because we assume that a particle does not stay put and acquires a mean square 
velocity  so that 

-  

- If the initial concentration, C0 is a constant,  

-

3kBT/m

C(x, t)dx =
1

4πDt ∫
∞

−∞
C(ξ,0)e(−x−ξ)2/4Dtdξ
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4.14 Diffusion as a Random Walk 105

Fig. 4.20 The initial concentration is constant to the left of the origin
and zero to the right of the origin

in Fig. 4.20. At t = 0 the diffusion starts. The concentration
at later times is given by

C(x, t) =
C0√
4πDt

∫ 0

−∞
e−(x−ξ)2/4Dt dξ .

Such integrals are most easily evaluated by using the error

function, defined by

erf(z) =
2

√
π

∫ z

0
e−t2

dt. (4.74)

The error function is plotted in Fig. 4.21. One must be careful
in using tables, which may be for related functions that differ
in normalization constants or the limits of integration.

To use the error function in evaluating the integral in
Eq. 4.73, make the substitution s = (x − ξ)/(4Dt)1/2. The
integral becomes
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Fig. 4.22 The spread of an initially sharp boundary due to diffusion

Since
∫ B
A f (x) dx =

∫ B
0 f (x) dx +

∫ 0
A f (x) dx =∫ B

0 f (x) dx −
∫ A

0 f (x) dx, this can be written as

C(x, t) =
−C0√

π

(∫ x/
√

4Dt

0
e−s2

ds −
∫ ∞

0
e−s2

ds

)

=
C0

2

[
1 − erf(x/

√
4Dt)

]
. (4.75)

The plot in Fig. 4.22 shows how the initially sharp con-
centration step becomes more diffuse with passing time.
Quantitative measurements of the concentration can be used
to determine D. Benedek and Villars (2000, pp. 126–136)
discuss some experiments to verify the solution we have
obtained above and to determine D.

Many other solutions to the diffusion equation and tech-
niques for solving it are known. See Crank (1975) or Carslaw
and Jaeger (1959).

4.14 Diffusion as a RandomWalk

The spreading solution to the one-dimensional diffusion
equation that we verified can also be obtained by treating the

Fig. 4.21 Plot of the error function erf(x)
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Fig. 4.20 The initial concentration is constant to the left of the origin
and zero to the right of the origin
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