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THE FIRST AND SEGOND LAWS OF TRERMODYNAMIGS
dU = TdS + dE




PHILLIP WU

SUMMARY OF THERMODYNAMICS
AND STATISGAL MEGHANIGS

= [f mechanical work is performed
by pressure p, the energy is

= dE = — pdV.

= The energy is described by the
Helmholtz (FF = U — 19) or Gibbs

free energy (G = U — 15 + pV).

= |n many solid state problems, the
application of thermodynamics
boils down to evaluating when

dFf = 0 ordG = 0.







BIOT-SAVART LAW

We calculate the field at some point P away from a
current carrying wire.

Lds Xr
JB — Ho
T im0 i ad
[ dxsin [ adx
dB = -° _ Ko
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Right hand rule!



BIOMAGNETISM: BIOT-SAVART LAW APPLIED T0 ANONS

: : Dendrit
= We calculate the field at some point P away e Aon Eminal
from a current carrying wire. Node of
B Hol ds X r Cell body anvier
- 5 dsind i ad %
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By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=28761830



BIOMAGNETISM: BIOT-SAVART LAW APPLIED T0 ANONS

Dendrite

Axon éeéminal

Node of
Ranvier

= We calculate the field at some point P away

Cell body

from a current carrying wire. 2,
A A A O (5
X y Z Axo Schwann cel
dS X | — dx O O — dx * y() K 2 Nucleus Myelin sheath ~
Xo—X Yy 0
» _ Hodo J ii(x)dx U@ oy, j [dv(x)/dx)dx
. ; A7 [(XO — .X)2 —+ )’(%]3/2 B 4 [(XO — X)z + yg]3/2
= Here the current i; = — za’c(dv,/dx)

~_

Current element idx or current dipole px stretched along x-axis

By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=28761830



BIOMAGNETISM: BIOT-SAVART LAW APPLIED T0 ANONS

Dendrite

Axon &minal
Node of

= We calculate the field at some

I Ranvier
point P away from a current Cell body
carrying wire. %,
Qno"
5& 5\/ 2 Axon Schwann cel
Myelin sheath- —
A Nucleus
dsXr=| dx 0 0| =dx*y,*zZ
-
Xo—X Yy 0
B — HoXo J L(x)dx _ //loazal.yo J [dvi(x)/dx]dx y -
- dr ) [(xg—x)* + yg]3/2 4 [(xg — X)2 + yg]yz —

= Here the gurrent
I, = — ma“o(dv,/dx)

By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=28761830 ~200-



BIOMAGNE TISM: BIOT-5AVART LAW APPLIED TO AXONS

The figure shows magnetic field maps recorded
over the scalp of a subject who heard a series of
words and either ignored them by reading
something else or listened carefully and counted
how many of the words were in a predetermined
list (from Haamaalaainen et al. 1993).

The second sustained field peak is stronger in
subjects that were focused with paying attention

to the list.







BIOMAGNETISM

Fig. 8.25 The small black dots are magnetosomes, small particles
of magnetite in the magnetotactic bacterium Aquaspirillum magneto-
tacticum. The vertical bar 1s 1 pm long. The photograph was taken by Y.
Gorby and was supplied by N. Blakemore and R. Blakemore, University
of New Hampshire.

The size distribution of these particles averages in many cases
around 50 nm, important for maintaining the remnant magnetization
field.

Magnetic properties of organisms, such as
algae, worms, and birds allow them to
geospatially geolocate.

Certain bacteria live in oxygen-deficient,
sulfur-rich environments, thus contain more
FeszS4 (Y600 K) instead of magnetite FesO4
(Curie 847 K).

In medical research, there are reports of
single domain magnetite 10 - 70 nm in
diameter used to attack cancerous cells with
hyperthermia (effectively heating the cells
when an external oscillating field is applied,
which causes the nanoparticles to rotate).

The body contains, by some sources, 3-4 ¢
of iron, mostly stored in the liver.



BIOMAGNETISM

= |n birds, the pineal gland is likely to be magneto sensitive. The “mechanism of the
pineal’s response is a decrease in enzymatic activity of hydroxyindole-O-methyl-
transferase (HIOMT) and N-acetyl-serotonin- transferase (NAT) when the animal is
exposed to a 50% decrease in the ambient magnetic field” (Beason, Semm).

= |n humans, this enzyme (acetyl-serotonin C.H.N.QO.) is encoded by the gene near the
end-caps of the X-chromosome, and is part of the pathway of conversion of
normelatonin to melatonin (an important part regulating sleep-wake cycle, and
interaction with melanin, which changes skin color).
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https://en.wikipedia.org/wiki/Acetylserotonin_O-methyltransferase https://en.wikipedia.org/wiki/Melatonin




BIOMAGNETISM OF THE HUMAN BODY

= A simple analysis to show that energetically, using magnetic effects can be meaningful:
assume a bio-magnetosome (some biomagnetic object) has an energy in the Earth’s
field of mB. Compare to the thermal energy, this factor is

mBy, .,  (6.4*10717J/T)(5*1075T)
— = 0.77. For larger magnetosomes,
1.38 * 10‘?3J/K)‘(3)8()K)

kpT
app}‘i’oximate agnetization at times larger, then this ratio approaches 20. The
maghnetic field due to a typical power line is 100 times smaller, at 5*10-7 T!

= For electric fields, the situation is not so simple, due to our skin and dielectric effects
which work to attenuate the electric field strength. Nonetheless, it is still possible in
some to measure a “resistance” with a handheld multimeter.



BIOELEGTRIGITY OF THE HUMAN BODY

Let’s consider two simple models: (1) an infinite slab of tissue with

dielectric constant (here written as) k and electrical conductivity o.

Gauss’ Law gives the charge at the surface:
= —€glocoswt + keyk (1) = aq(t)

dEl O 4) ) . .
_ | E, = — —Eysinwt — Asinwt + Bcoswt as solutions to L.
dt ke K
= We solve for the coefficients. of this solution as
L 58!
k(1 + w?t?) o
(wT,)?
_ B=—-wr A= E.~0

k(1 + w2c2)

= |mportantly, assume 60 Hz, dielectric constant 106, membrane
response time of 1 microsecond, we arrive at &/, * A ~ 33 * 10

(a tiny number).

_9EO

K =1 dgq
E,cos(mt) E.cos(mt)
S E,(t) ’ ,
+Gq (t) - Gq (t)
K c

Table 9.5 Comparison of the signal in a cell to thermal noise for an
applied electric field in air Eg = 300 V m~!. From Eq. 9.71, E; =
10°Vm . T=300K.z=10.d = 10 m

Model Outside the In the cell Inside the cell
cell membrane

E(Vm) 1.0 x 1077 1.62 x 1072 5.40 x 10710

kpT/eE (m) 2.57 x 103 1.59 479 x 107

zeEd/kgT 3.9 x 1078 6.3 x 107> 2.1 x 10712
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= Let’s consi¢ “tissue with K =1 do
dielectric c g > ductivity o. 6=0 | oE, =j= dq
Gauss’ LawZ@@ | 3 t
— —GOEOCOS - E,cos(mt) E.(t E, cos(ot)
1 /) . )
- | lutions to E. O (1) % (1)
di  keyh
K o
= We solve fq
A= 4
K(1§

B

— T
! Table 9.5 Comparison of the signal in a cell to thermal noise for an
applied electric field in air Eg = 300 V m~!. From Eq. 9.71, E; =
10°Vm . T=300K.z=10.d = 10 m

Model Outside the In the cell Inside the cell
= |mportantl mbrane cell membrane
response ti 33 * 1()_9EO E(Vm) 1.0 x 107 1.62x 1072 5.40 x 10710
kpT/eE (m) 2.57 x 103 1.59 479 x 107

(a tmy nu zeEd/kgT 3.9 x 1078 6.3 x 1072 2.1 x 10712




oC
The diffusion equation looks like this: j, = — D—

ox

= Generally known as Fick’s First Law, with units of /
m2s for the current

= |f 0C/0x = 0, no diffusion.

= |f not, then movement of particles (ions) occurs from
higher concentration to lower concentration.

= Fick’s law is one of many forms of transport
equations.

DIFFUSION: POTENTIALS AND TRANSPORT




Substance flowing

Particles

Mass

Heat

Electric charge

Viscosity (y component of momentum transported 1n the x direction)

Equation
- —_D 0C
Js = o
dp
. __po
Jm 5
, oT
= —K
JH .
oV
= —O0 ——
Je 7
dv
Jp = —1 —

DIFFUSION: POTENTIALS AND TRANSPORT

Units of j Units of the constant

m=2 ¢! m2 ¢!

kgm=2 s~ ! m? s~ !

IJm2s'orkgs™3 JK Tm=ts!

Cm2s! Cm s 'V96ior2 'm™!
NmZ2orkgm !'s™ kem!slorPas



DIFFUSION: POTENTIALS AND TRANSPORT

An example to solve the Fick’s Law.

A downward flux density, from the forces ', — /v = 0, means
that the number of particles crossing area § in Az will be those
within the cylinder of height VAr. The concentration then is SVA?

jdrift = — vC(y)y.

. __oc,

Jdiff = oy Y

Equating these two means the system is then at equilibrium, gives

C(y) = CO)e Tl

From this, we find that the diffusion constant and the velocity are
related, v = DF, /k;T

ext

So far, the solutions only require the the velocities be small
enough so that a linear approximation for Fick’s law and viscous
forces are valid. If the diffusing partlclis ?,re large enough to allow

Stoke’s law, then f = 67nya with D = :
6rna
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Fig. 4.11 Diffusion constant versus sphere radius a for diffusion in
water at three different temperatures. Experimental data at 20 °C (293
K) are from Benedek and Villars (2000, Vol. 2, p. 122). Data at 25 °C
(298 K) are from Weast (1972, p. F-47)

DIFFUSION: PUTENTIAI.S AND TRANSPUHT
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Fig.4.12 Diffusion constant versus molecular weight in daltons. (One
dalton i1s the mass of one hydrogen atom.) Data at 293 K are from
Benedek and Villars (2000, Vol. 2, p. 122). The 293-K solid line was
drawn by eye through the data; the line at 310 K was drawn parallel to
it using the temperature change in Eq. 4.23. Data scatter around the line
by about 30%, with occasional larger departures



DIFFUSION: POTENTIALS AND TRANSPORT

oC
The diffusion equation looks like this: j, = — D—

. 0x

= We can use this equation to understand ion movement in solutions, for example, where
the solute particles move by diffusion. The average velocity of these particles is
obtained from either being at rest with respect to a moving solution, i.e. solvent drag, or
having an external force such as gravity or an electric field dragging the solute particles
in the solution.

- This adds a term to the diffusion equation, j. = — Dd_ + CV, 1,
X

= |f an external force [ = zeL acts on the particles, the velocity
V = zeE/(kgT/D).

solut — Y solvnent

dC
The particle current density becomes j. = — D— + (j, + CzeE

dx kT




DIFFUSION: POTENTIALS AND TRANSPORT

= We consider the case where there is no bulk solution flow, the Nernst-Planck equation:

, dC D
Jo=—D F CzeE—.
dx kpT

= The physics here to intuitively understand is that diffusion always occurs towards the region of lower
concentration, while for positive charge the V_, term is in the direction of the electric field E.

olu

= Qur initial conditions are current density in bulk solution with x = 0, v(x) = 0; x = L, v(x) = v.

| 7?e’DCS v G(C)
Then,] — — V.
kpTL S S

= This can be rewritten in terms of the conductivity, as defined from G = oS/L = 1/R = §S/pL

1 z%e’DC
N p kpT




= Some ion conductivities

1 z%e*’DC
- I, kpT

DIFFUSION: POTENTIALS AND TRANSPORT

Table 9.4 Conductivities of ions at various concentrations at 25°C,
calculated using Eq. 9.39. Diffusion constants for each ion are from
Hille (2001, p. 317). Concentrations are typical of mammalian nerve
and are from Hille (2001, p. 17). The conductivities of each species add,
and p = 1/o0. Larger 1ons with very small diffusion constants make the
solutions electrically neutral

D C o 0
(mzs_l) (mmol 1_1) (S m_l) (2m)
Extracellular squid axon
Na 1.33 x 1072 145 0.723
K 1.96 x 10~ 4 0.029
Cl 2.03 x 10~? 123 0.936
1.638 0.592
Intracellular squid axon
Na 1.33 x 10~° 12 0.060
K 1.96 x 102 155 1.139
Cl 2.03 x 10~° 4.2 0.032

1.231 0.812




DIFFUSION: POTENTIALS AND TRANSPORT

= Some ion conductivities 6
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Fig. 9.12 Steady-state potassium current and peak sodium current for a squid axon subject to a voltage clamp vs. the transmembrane potential
during the clamp. These are not real data, but were generated using the Hodgkin—Huxley model. a Current density. b Current density divided by
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(b)

the difference between the potential and the Nernst potential, to give the conductance per unit area. (see Eq. 6.61)



DIELECTRIC SPECTROSCOPY (?)

= From impedance spectroscopy, characterization of organic material can be obtained.

= The basic model is a distributed element or constant phase element model with a

An example is that of human blood.

capacitor like element with a reactance of the form

1 R,

Zr =+

freque

. =R, + .
A@f@ I + RpCr(jw)”

with j = — 1,w = 2xf, f the electric current

-200000
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DIFFUSION: POTENTIALS AND TRANSPORT

C(x,t)/N

0.5 | | | | |
c2(0) = 1
0.4} -
0.3 _
6°(1) = 6%(0) + 2 x 1
0.2 L) i
6°(2) = 6%(0) +2x2
0.1 g -
0.0 b= :_:f:‘/'/ _ | 1\\ ......

Spreading of particles by diffusion assuming D =1

There is of course also a time dependence
associated with understanding of Fick’s law,
the 2nd law.

oC , 0°C  0°C 0 C
—— =D(V*C) = D(— +
ot ox?  dy? 072

The solution in 1D for the concentration in then

Clx, 1) = ——e™ P70
\/ 27o(t)

We can check this by plugging in this formula
and equating both sides.



DIFFUSION: POTENTIALS AND TRANSPORT

A general solution, for the concentration can be estimated (we’ll just show this slide)
because we assume that a particle does not stay put and acquires a mean square
velocity 3k;T/m so that

0

=]
\/47TDt — 00

C(x, Hdx = C(E,0)e 74Dt e

If the initial concentration, Co is a constant,

kcie,0)
Co

Fig.4.22 The spread of an initially sharp boundary due to diffusion

Fig. 4.20 The initial concentration is constant to the left of the origin
and zero to the right of the origin



