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Electromagnetic Waves
• The Maxwell’s Equations and some examples

𝛻 ∙ 𝐸 =
𝜌
𝜖0

𝛻 ∙ 𝐵 = 0

𝛻 × 𝐸 = −
𝜕𝐵
𝜕𝑡

𝛻 × 𝐵 = 𝜇0𝑗 +
1
𝑐2

𝜕𝐸
𝜕𝑡

𝛻 ∙ 𝐷 = 𝜌

𝛻 ∙ 𝐵 = 𝜌𝑚

𝛻 × 𝐸 = −
𝜕𝐵
𝜕𝑡

+ 𝑗𝑚

𝛻 × 𝐻 = 𝑗 +
𝜕𝐷
𝜕𝑡

Describing magnetic 
monopoles



Magnetism

Material equations
Based on the value of the moment or 

susceptibility, material magnetic properties 
are classified as

𝑀 = (𝜇 − 1)𝐻 = 𝜒𝐻

Diamagnetic 

Paramagnetic 

Ferrimagnetic or Ferromagnetic 

Ultimately, it is a mechanical torque from the 
induction B on the moment m that generates 
the magnetic behavior

𝜒 < 0

𝜒 > 0

𝜒(𝐻 ) ≫ 1

𝑗 = 𝜎𝐸
𝐷 = 𝜖0𝜖𝐸

𝐵 = 𝜇0𝜇𝐻 = 𝜇0(𝐻 + 𝑀)
𝑀 = ∑

𝑉𝑜𝑙𝑢𝑚𝑒

𝑚𝑖 = 𝑙𝑖𝑚𝐼→∞;𝐹→0(𝐼𝐴)

Units A/m

Units A

Units V/m



Magnetism

The magnetic susceptibility of materials

Based on the value of the moment or susceptibility, 
material magnetic properties are classified as

𝑀 = (𝜇 − 1)𝐻 = 𝜒𝐻

Diamagnetic 

Paramagnetic 

Ferrimagnetic or Ferromagnetic 

𝜒 < 0

𝜒 > 0

𝜒(𝐻 ) ≫ 1

As a function of temperature, the magnetic 
materials exhibit the following behaviors:

from Kittel’s Solid State Physics



Magnetism

The magnetic susceptibility of materials

Based on the value of the moment or susceptibility, 
material magnetic properties are classified as

𝑀 = (𝜇 − 1)𝐻 = 𝜒𝐻

Diamagnetic 

Paramagnetic 

Ferrimagnetic or Ferromagnetic 

𝜒 < 0

𝜒 > 0

𝜒(𝐻 ) ≫ 1

As a function of temperature, the magnetic 
materials exhibit the following behaviors:



Permanent Magnets

Magnetic Domains

Kittel Solid State Physics



Permanent Magnets
± Ferromagnetic materials exhibit a distinctive magnetization response

𝐵𝑠 = 4𝜋𝑀𝑠

Saturation flux 
density depends 
on the saturation 
magnetization 
Ms.



Diamagnets
± We consider the “Larmor” precession of electrons about a (external, applied or otherwise) 

magnetic field -> analysis from the cyclotron frequency (recall Lorentz force)

𝜔𝐿 = − 𝑒𝐻/2𝑚𝑐

𝜒 = 𝑀/𝐻 = 𝜇 /𝐻 =
−𝑍𝑒2

4𝑚𝑐2
𝑁𝑟2

If we work out the electron distribution in r (for 
material of interest), then the susceptibility can be 
understood!



Diamagnets
± Given this understanding, the molar diamagnetic susceptibilities of ions, and also 

molecules, in crystals can be experimentally extracted.

Experimental values in 
10-6 cm3/mole

Theoretical Values

He -1.9 -1.9
Ne -7.2 -8.6
Xe -43
F- -9.4 -17
Cl- -24.2 -41.3
Na+ -6.1 -5.6
K+ -14.6 -17.4
Mg2+ -4.3 -4.2
Ca2+ -10.7 -13.1



Paramagnets
± The Langevin paramagnet model is a medium of N atoms per unit volume each 

bearing a magnetic moment . Then the interaction energy or potential is 
.

± In this case 

± Thus, 

𝜇
𝑉 = − 𝜇 ⋅ 𝐻

𝑀 = − 𝜇 ⋅ 𝐵 = − 𝜇𝐵𝑐𝑜𝑠𝜃 = ∫
2

0
𝜋2𝜋𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑒𝜇𝐵𝑐𝑜𝑠𝜃/𝑘𝑇𝑑𝜃/∫

𝜋

0
2𝜋𝑠𝑖𝑛𝜃𝑒𝜇𝐵𝑐𝑜𝑠𝜃/𝑘𝑇𝑑𝜃 = 𝑁𝜇𝐿(𝑎) ≈ 𝑁𝜇2𝐻/3𝑘𝑇

𝜒 = 𝑀/𝐻 = 𝑁𝜇2/3𝑘𝑇 = 𝐶/𝑇



Quantum Theory of Magnetism
± So far we describe materials using a macroscopic moment, . In 

paramagnets if an external field is applied then a Zeeman energy 
splitting is induced in the energy levels.

± This modifies , 

with  and Bohr magneton 

. This is because there 
are two levels separated by the external field.

𝜇

𝑀 =
𝑁𝑔𝜇𝐵

2
𝑡𝑎𝑛h(𝑔𝜇𝐵𝐻/2𝑘𝑇 ) ≈ 𝑁(𝑔𝜇𝐵)2𝐻/4𝑘𝑇

𝑔 = 1 +
𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
𝜇𝐵 = 𝑒/2𝑚𝑐 = − 0 . 927 ∗ 10−20𝑒𝑟𝑔/𝑜𝑒𝑟𝑠𝑡𝑒𝑑

Sz = 1/2

ℏ𝜔 = 2𝜇𝐵𝐻

Sz = -1/2



Quantum Theory of Magnetism
± So far we describe materials using a macroscopic moment, . In 

paramagnets if an external field is applied from internal mechanisms, 
such as with atomic doping or substitution, then anenergy splitting is 
also induced in the energy levels.

± This modifies , with Brillouin function

 and

.
± This method could be used to probe, for example, the insertion of rare 

earth ions in matrix.

𝜇

𝑀 = 𝑁𝑔𝐽𝜇𝐵𝐵𝐽(𝑥)

𝐵𝐽(𝑥) =
2𝐽 + 1

2𝐽
𝑐𝑡𝑛h(

𝑥(2𝐽 + 1)
2𝐽

) −
1

2𝐽
𝑐𝑡𝑛h(

𝑥
2𝐽

)

𝜒 ≈ 𝑁𝐽(𝐽 + 1)𝑔2𝜇2
𝐵 /3𝑘𝑇

Sz = 1/2

ℏ𝜔 = 2𝜇𝐵𝐻

Sz = -1/2



Ferromagnets
± Can be empirically understood from Curie-Weiss law, with the applied (whether 

internal or external) field  so that 

± Quantum mechanically we must consider taking a paramagnet and adding an 
additional energy term, the exchange integral J to account for electron-electron 
“exchanges.” This term depends on spin, orbit, lattice energies.

𝐻𝐸 = 𝜆𝑀 ≈ 𝑘𝑇𝑐 /𝑔𝑆𝜇𝐵 𝜒 =
𝐶

𝑇 − 𝐶𝜆
=

𝐶
𝑇 − 𝑇𝑐

C (deg-3/2) J (spin waves)
Iron 3.5*10-6 205k (S=1)
Nickel 8.6*10-6 230k (S=1/2)



Crystal Structure
± For example, the NaCl and CsCl structures, cubic.

Silicon

Simple cubic Body centered Face centered

https://en.wikipedia.org/wiki/Crystal_structure
https://www.beautifulchemistry.net/crystal-structure



Crystal Structure
± Various types of known lattices
± Miller index planes

https://en.wikipedia.org/wiki/Crystal_structure

𝑑 =
2𝜋

|𝑔𝑙𝑚𝑛 |



The Reciprocal Lattice
± A way to describe the lattice. For example, a, b, c are primitive 

translations of the crystal lattice.
±  and 

± , 

± From this construction, the vector  from the origin to the point 
(h,k,l) of the reciprocal lattice is normal to the (hkl) plane of the crystal 
lattice. The length of the vector  is equal to the reciprocal of the 
spacing of the planes (hkl) of the crystal lattice.

±

𝑎∗ ⋅ 𝑎 = 𝑏∗ ⋅ 𝑏 = 𝑐∗ ⋅ 𝑐 = 1
𝑎∗ ⋅ 𝑏 = 𝑎∗ ⋅ 𝑐 = 𝑏∗ ⋅ 𝑐 = 𝑏∗ ⋅ 𝑎 = 𝑐∗ ⋅ 𝑎 = 0

𝑎∗ =
𝑏 × 𝑐

𝑎 ⋅ 𝑏 × 𝑐
, 𝑏∗ =

𝑐 × 𝑎
𝑎 ⋅ 𝑏 × 𝑐

, 𝑐∗ =
𝑎 × 𝑏

𝑎 ⋅ 𝑏 × 𝑐
𝑟∗(h𝑘𝑙)

𝑟∗(h𝑘𝑙)

𝑑(h𝑘𝑙) = 𝑛 ⋅ 𝑎 /h = 𝑟∗ ⋅ 𝑎 /h |𝑟∗ | = 1/ |𝑟∗ |

Incident wave

Reflected wave

Normal to reflecting 

plane with length 
2/𝜆𝑠𝑖𝑛𝜃



The Reciprocal Lattice
± The Bragg condition can then be generally written as 

 or  where G is  times the 
vector from the origin to a lattice point in the reciprocal lattice, 
and  is the propagation vector (of magnitude ).

± An important example is one of the face centered cubic lattice 
with reciprocal lattaice equal to the body centered cubic lattice.

±

±

(𝑘 + 𝐺)2 = 𝑘2 2𝑘 ⋅ 𝐺 + 𝐺2 = 0 2𝜋

𝑘 2𝜋/𝜆

⃗𝑎1 =
𝑎
2

⋅ ( ̂𝑦 + ̂𝑧 ), ⃗𝑎2 =
𝑎
2

⋅ ( ̂𝑥 + ̂𝑧 ), ⃗𝑎3 =
𝑎
2

⋅ ( ̂𝑥 + ̂𝑦 )
⃗

𝑏1 =
8𝜋
𝑎3

⋅ ⃗𝑎2 × ⃗𝑎3 =
4𝜋
𝑎

⋅
1
2

( − ̂𝑥 + ̂𝑦 + ̂𝑧 ),
⃗

𝑏2 =
8𝜋
𝑎3

⋅ ⃗𝑎3 × ⃗𝑎1 =
4𝜋
𝑎

⋅
1
2

( ̂𝑥 − ̂𝑦 + ̂𝑧 ),
⃗

𝑏3 =
8𝜋
𝑎3

⋅ ⃗𝑎1 × ⃗𝑎2 =
4𝜋
𝑎

⋅
1
2

( ̂𝑥 + ̂𝑦 − ̂𝑧 )

https://www.physics-in-a-nutshell.com/article/15/the-reciprocal-lattice



Point Groups
Mathematically are matrices that satisfy y = M x

And is described as a group of geometric symmetries that keep at least one point fixed.

For example the rotation matrices in our spin discussion of the Stern-Gerlach experiment with .𝜇 = 1

https://en.wikipedia.org/wiki/Point_group
Calcite image from Aldoaldoz

https://en.wikipedia.org/wiki/Point_group
https://en.wikipedia.org/wiki/Point_group


Quasicrystals
Quasicrystals [From the Website]. In 1982, D. Shechtman observed a diffraction pattern that he hardly believed when he 
was using electron diffraction to study a fast quenched Al-Mn alloy (above image). The spots were as clear as the 
diffraction spots from crystals, but what confused him was the decagonal symmetry, which was impossible for crystals. 
Shechtman immediately realized that this pattern should imply a totally new solid structure, ordered but not periodic, and 
which was why it still generated clear diffraction patterns. Shechtman published the result in 1984. Scientist named this 
type of material “quasicrystals” and realized its similarity to Penrose pattern (p100). The discovery of quasicrystals 
triggered intense debates in academia. Many scientists, including L. Pauling, the two-time Nobel Laureate, denied its 
existence. He criticized that “No quasicrystals but only quasi-scientists.” However, more and more quasicrystals were 
discovered. In 1992, the International Union of Crystallography revised the definition of crystals and included the 
quasicrystal into the new definition. In 2011, Shechtman received Nobel Prize in chemistry for his contribution in 
quasicrystals. The establishment of quasicrystal is a typical example of a new idea challenging old ideas in the history of 
science. [Figure reference: Shechtman, D. et al. Phys. Rev. Lett. 53, 1951 (1984)]

[Abstract from the PRL Paper] We have observed a metallic solid (Al-14-at.%-Mn) with 
long-range orientational order, but with icosahedral point group symmetry, which is 
inconsistent with lattice translations. Its diffraction spots are as sharp as those of crystals but 
cannot be indexed to any Bravais lattice. The solid is metastable and forms from the melt by 
a first-order transition.

https://www.beautifulchemistry.net/crystal-structure



The Band Theory of Solids
± Free electron theory of metals: the assumption is that weakly bound valence 

electrons of the atoms composing the metal are not bound to particular atoms but 
move throughout the entire solid. Equivalently, the electron moves throughout the 
metal in a constant electrostatic potentail.

± At the boundaries of the metal the potential will rise rapidly because of the net 
electrostatic force acting on an electron at the boundary. Thus, in this model, the 
electrons in a metal are treated like a gas composed of non-interacting spin-1/2 
“fermions” confined to a three-dimensional box.



Free Electron Theory of Metals
± For example: a 1D infinite square well of length l has energies . This is 

generalized to a 3D infinite well of side l as  For each n in x, 
y, z, the possible values are integer numbers and so a different number of states may in fact have the 
same energy, a situation termed “degenerate”. 

𝐸𝑛 =
𝑛2h2

8𝑚𝐿2
, 𝑛 = 1, 2, 3, …

𝐸𝑛 = (𝑛2
𝑥 + 𝑛2

𝑦 + 𝑛2
𝑧)𝐸0,  𝐸0 =

h2

8𝑚𝑙2
.

Energy Equal-Energy States Order of Degeneracy
2E0 (1,1,1) 1

6E0 (2,1,1)  (1,2,1)  (1,1,2) 3

9E0 (2,2,1)  (2,1,2)  (1,2,2) 3

11E0 (3,1,1)  (1,3,1)  (1,1,3) 3

12E0 (2,2,2) 1

14E0 (1,2,3)  (1,3,2)  (2,1,3)  
(2,3,1)  (3,1,2)  (3,2,1)

6



Free Electron Theory of Metals
± In a metal or gas molecules in a container, given in a box of length l, where l is made very large, the 

number of states (and ultimately electrons) is found by taking 

±

± iF the volume V=l3, the density of states 

𝑁 = 𝑛2
𝑥 + 𝑛2

𝑦 + 𝑛2
𝑧 ,  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 𝑑𝑆 =

1
8 (4𝜋𝑁2𝑑𝑁) =

𝜋
2

𝑁2𝑑𝑁  → 𝑁2 = 𝑛2
𝑥 + 𝑛2

𝑦 + 𝑛2
𝑧 = 𝐸( 8𝑚𝑙2

h2 ) 𝑖𝑛 𝐸 𝑡𝑜 𝐸 + 𝑑𝐸 .

𝑑𝑁 =
( 8𝑚𝑙2

h2 )
1
2
𝑑𝐸

2𝐸 1
2

; 𝑑𝑆 =
𝜋
2

𝐸( 8𝑚𝑙2

h2 )( 8𝑚𝑙2

h2 )
1
2

( 𝑑𝐸

2𝐸 1
2 ) =

2𝜋𝑙3(2𝑚)
3
2

h3
𝐸

1
2  𝑑𝐸

𝑔(𝐸) =
2𝜋𝑉 (2𝑚)

3
2

h3
𝐸

1
2



Specific Heat of Solids
± The molar specific heat at constant volume of a solid is defined as 

± Classically considering the 3N modes of a crystalline solid, the expected value of 
, the ideal gas constant.

𝐶𝑉 =
1
𝑁 ( 𝜕𝐸𝑇

𝜕𝑇 )
𝑉

𝐶𝑉 = 3𝑅



Examples: Dulong-Petit Law
± Imagine a crystal lattice as a system of regularly spaced atoms connected by springs.

±

± From Equipartition Theorem, 

± The molar specific heat is .

± This expression is known as the Dulong-Petit Law.

𝐸 =
1

2𝑚 (𝑝2
𝑥 + 𝑝2

𝑦 + 𝑝2
𝑧) +

1
2

(𝜅𝑥𝑥2 + 𝜅𝑦𝑦2 + 𝜅𝑧𝑧2)

𝐸𝑡𝑜𝑡 = 𝑁0(6)( 𝑘𝑇
2 ) = 3𝑁0𝑘𝑇 .

𝐶𝑉 =
𝑑𝐸𝑡𝑜𝑡

𝑑𝑇
= 3𝑁0𝑘 = 3𝑅



Examples: Diatomic Molecule Specific Heat

± The diatomic molecule, free to rotate but not to vibrate.
± Let’s find the molar heat capacity of a diatomic gas.

± The energy of one diatomic molecule is .

± The Equipartition Theorem says that effectively each degree of freedom adds ½ kT 

of energy so that the energy of one mole of gas is  

Then the molar specific heat 

𝐸 =
1

2𝑚 (𝑝2
𝑥 + 𝑝2

𝑦 + 𝑝2
𝑧) +

1
2

𝐼𝜔2
1 +

1
2

𝜔2
2

𝐸𝑡𝑜𝑡 = 𝑁0𝑛( 𝑘𝑇
2 ) =

5
2

𝑁0𝑘𝑇 .

𝐶𝑉 =
𝑑𝐸𝑡𝑜𝑡

𝑑𝑇
=

5
2

𝑁0𝑘 =
5
2

𝑅 .

R/2
R/2

M



Examples: Induced RMS Voltage in RLC Inductor 
from Thermal Energy

± Imagine a high-Q RLC circuit at some temperature T.
± The rms value of the induced voltage in the inductor from 

thermal fluctuations can be estimated with the 
Equipartition Theorem.

±

±
 a high quality factor circuit is tuned to 

resonance, and the voltage across the inductor is 

𝐸 =
𝐼

∫
0

𝑉𝐿𝑖𝑑𝑡 =
𝐼

∫
0

𝐿𝑖𝑑𝑖 =
1
2

𝐿𝐼2 → 𝐸𝑎𝑣𝑔 =
1
2

𝐿(𝐼2)𝑎𝑣𝑔
=

1
2

𝑘𝑇

𝜔0 =
1

𝐿𝐶

𝑉𝐿 = 𝜔0𝐿𝐼 → 𝑉 2
𝐿𝑎𝑣𝑔 = 𝜔2

0𝐿𝑘𝑇  𝑜𝑟 𝑉𝐿, 𝑟𝑚𝑠 = 𝜔0 𝐿𝑘𝑇 =
𝑘𝑇
𝐶



Counting Particles: Maxwell-Boltzmann 
Distribution

± We assume statistically that particles have an “intrinsic probability” gi of occupying 
the ith cell.

± This probability is a counting  

 
± This counting formula is rewritten in the following way 

 
with objective to maximize the probability ! finding that 

𝑃𝑛 =
𝑁!

𝑛1!𝑛2!…𝑛𝑟!
𝑔𝑛1

1 𝑔𝑛2
2 …𝑔𝑛𝑟

𝑟

with the constraints that ∑ 𝑛𝑖 = 𝑁 𝑎𝑛𝑑 ∑ 𝐸𝑖𝑛𝑖 = 𝐸𝑡𝑜𝑡

𝜕𝐹
𝜕𝑛𝑖

= 𝑙𝑛
𝑃𝑛

𝑁!
= ∑ 𝑛𝑖𝑙𝑛𝑔𝑖 − ∑ 𝑙𝑛 𝑛𝑖! = ∑ 𝑛𝑖𝑙𝑛𝑔𝑖 − ∑ 𝑛𝑖𝑙𝑛 𝑛𝑖 + ∑ 𝑛𝑖 = ∑ 𝑛𝑖𝑙𝑛𝑔𝑖 − ∑ 𝑛𝑖𝑙𝑛 𝑛𝑖 − 𝜆1(∑ 𝑛𝑖 − 𝑁) − 𝜆2(∑ 𝐸𝑖𝑛𝑖 − 𝐸𝑡𝑜𝑡)

𝑛𝑖 = 𝑔𝑖𝑒−1−𝜆1𝑒−𝜆2𝐸𝑖 = 𝐴𝑔𝑖𝑒−𝛽𝐸𝑖



Fermi Dirac Distribution Function

± Blue – T > 0 K
± Orange – T = 0 K.

𝐹𝐹𝐷 ≈
1

exp( 𝐸 − 𝐸𝑓0

𝑘𝑇 ) + 1 



Total Number N of Fermions and Its Energy

±

± Thus,  

± As the temperature increases, the Fermi energy remains about equal to .

𝑁 = 2
∞

∫
0

𝐹𝐹𝐷𝑔(𝐸)𝑑𝐸 =
4𝜋𝑉(2𝑚)

3
2

h3

∞

∫
0

𝐸
1
2 𝑑𝐸

1
exp(𝐸 − 𝐸𝑓)

𝑘𝑇 +  1 
=

4𝜋𝑉(2𝑚)
3
2

h3 ( 2
3

𝐸
3
2
𝑓0)

𝐸𝑓0 =
h2

8𝑚 ( 3𝑁
𝜋𝑉 )

2/3

 

𝐸𝑓0



Band Theory of Solids

± Conductors ± Insulators ± Semiconductors

E1

E2 Ec

Ev

Ec

Ev
5 eV 1 eV



Band Theory of Solids

± Conductors ± Insulators ± Semiconductors

E1

E2 Ec

Ev

Ec

Ev
5 eV 1 eV

We can estimate the density of carriers, 
electron and holes.

𝑛𝑒 = 𝑓𝐹𝐷𝑔(𝐸)𝑑𝐸

𝑛h = (1 − 𝑓𝐹𝐷)𝑔(𝐸′ )𝑑𝐸′ 



Optoelectronics
± Recall our discussion of the hydrogen atom and molecule.

The d band and s band are thought to overlap
The 3d band estimated as 3.46 eV in width and the Fermi 
surface lying in the 4s band is 3.7 eV, above the 3d band. For 
free electrons the Fermi surface is estimated at 7.1 eV

Reddish color of Cu comes from strong absorption in the 
blue-green spectrum, onset at 575 nm with 2.1 eV



PN Junctions
± For rectifiers, 

 

meaning the thickness is then 
 with the thickness forming 

a barrier layer that acts as an insulator (creating 
or allowing the voltage drop across the contact 
region)

± The net current is 
.

𝛻 ⋅ 𝐷 = 4𝜋𝜌 →
𝑑2𝜙
𝑑𝑥2

=
4𝜋𝑁𝑒

𝜖
→ 𝜙 =

2𝜋𝑁𝑒
𝜖

𝑥2

𝐷 = (𝜖𝜙0/2𝜋𝑒𝑁 )1/2

𝑗 = 1/4𝑁𝑒𝑣𝑒−𝑒𝜙0/𝑘𝑇(𝑒𝑒𝑉/𝑘𝑇−1)



PN Junctions

± The net current is 
.

± In forward bias, recombination current
 

depends on generation current.
± The total current 

.

𝑗 = 1/4𝑁𝑒 𝑣 𝑒−𝑒𝜙0/𝑘𝑇(𝑒𝑒𝑉/𝑘𝑇−1)

𝐼𝑟 = 𝐼𝑔𝑒𝑒𝑉/𝑘𝑇 → 𝐼𝑟 − 𝐼𝑔 = 𝐼𝑔(𝑒𝑒𝑉/𝑘𝑇 − 1)

𝐼 = 𝐼𝑠(𝑒𝑒𝑉/𝑘𝑇 − 1) = 𝐼𝑛 + 𝐼𝑝 = 𝑝𝑛 |𝑒 |𝐷𝑝 /𝐿𝑝 + 𝑛𝑝 |𝑒 |𝐷𝑛 /𝐿𝑛(𝑒𝑒𝑉/𝑘𝑇 − 1)



Luminescence
± An example is to consider the sulfide phosphors, ZnS:Ag, ZnS:Cu. Here the 

activators are Ag and Cu. The ZnS is either a cubic-zincblende (3.64 eV, 3410 
Angstrom) or hexagonal-wurtzite (3.7 eV, 3350 Angstrom) structure. From 
crystalline imperfections the excitation, via interbank transitions, at 3650 Angstrom 
are possible.

https://www.youtube.com/watch?v=_FXukyeNEFQ



Optoelectronics
± Concerned with the optical properties of novel materials, specifically often metal-

semiconductor combinations or junctions, such as the following structure:



Quantum Wells
± In 1D, 2D, 3D the density of states (density of electrons follows the following 

structure).

± Understanding the electron density and effective mass (what kind of material from the periodic 
table) is the first step in determining the quantum well behavior, from conduction to optics!



Double Well Heterostructure

± Double well and the refractive indices

J is the injected current density, 
d the active thickness, G(n) the 
amplification rate due to 
stimulated emission,  the 
carrier lifetime,  the optical 
confinement factor of the active 
layer,  the photon lifetime,  
the spontaneous emission 
coupling factor, and the 
radiative recombination lifetime

𝜏𝑛
Γ𝑎

𝜏𝑝h 𝛽𝑠𝑝

𝜏𝑟



Double Well Heterostructure
± Current-Voltage 

Characteristics
± Under forward bias, V > 0, 

the hole concentration in the 
n-region is increased, so that 
the carriers in the n region 
have a concentration as

± The current as a function of 
the voltage is then written 
explicitly Conventional light diodes operating at 

room temperature have electron 
concentrations 1011 /cm3 with 1 ps 
photon lifetime, 4  resistance, 3.5 
(effective) refractive index. The 
electron group velocities 109 cm/s.

Ω


