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© Electromagnetic Waves

* The Maxwell’'s Equations and some examples
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Magnetism

. : Based on the value of the moment or
Material equations susceptibility, material magnetic properties

j =20 E Units A are classified as

Di ' 0)
D = €O€ E e 1amagnetic y <
P ticS=>50
B = pouH = puy(H + M) Units Aim = e

M=y S im0l

Volume Ultimately, it is a mechanical torque from the

M = ( U — 1)H e )(H induction B on the moment m that generates
the magnetic behavior

Ferrimagnetic or Ferromagnetic y(H ) > 1



Magnetism

The magnetic susceptibility of materials
M=(u—1)H= yH

Based on the value of the moment or susceptibility,
material magnetic properties are classified as

Diamagnetic y < 0
Paramagnetic y > 0

Ferrimagnetic or Ferromagnetic y(H ) > 1

As a function of temperature, the magnetic
materials exhibit the following behaviors:

Ferromagnetic
6: x-5

from Kittel’s Solid State Physics



Magnetism

As a function of temperature, the magnetic
The magnetic susceptibility of materials materials exhibit the following behaviors:

M=u—-1)H=yH

Based on the value of the moment or susceptibility,

material magnetic properties are classified as |

Critical temperature

Diamagnetic y < 0
Paramagnetic y > 0

Ferrimagnetic or Ferromagnetic y(H ) > 1

fe rrimaneﬁc
S :




Permanent Magnets

Magnetic Domains

.. Unmagnetized Magnetized by Magnetized by
] domain growth domain rotation
(boundary
displacement).

_Fig. 15.8. Fundamental magnetization processes.

M

Magnetization
rotation

Irreversible
boundary
displacements

Reversible
boundary

Kittel Solid State Physics



Permanent Magnets

+ Ferromagnetic materials exhibit a distinctive magnetization response

Saturation flux
density depends
on the saturation
magnetization

Fig. 15.10. The technical magnetization curve. The coercive force H, is the

reverse field necessary to bring the induction ‘2 to zero; the remapence B, is the

value of B at H = 0; the saturation induction B is defined as the limiting value of
(B — H) for large H.

Iig. 15.11a. Simple domain structure in Si-Fe single crystal. [After Williams,
"‘Bozorth, and:Shockley, Phys. Rev. 76, 155 (1949).]




Diamagnets

+ We consider the “Larmor” precession of electrons about a (external, applied or otherwise)

magnetic field -> analysis from the cyclotron frequency (recall Lorentz force)

|L|= Il + A

| = orbital quantum
number

If we work out the electron distribution in r (for
material of interest), then the susceptibility can be
understood!



Diamagnets

+ Given this understanding, the molar diamagnetic susceptibilities of ions, and also
molecules, in crystals can be experimentally extracted.
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Paramagnets

The Langevin paramagnet model is a medium of N atoms per unit volume each
bearing a magnetic moment y. Then the interaction energy or potential is

V=—u-H.

In this case
2

M=—,u-B=—,uBcos9=[

nznsinecoseeﬂBcoswdee/[ 27sin@en BV T qg — Nul(a) ~ Nu?H/3kT
0]

0

Thus, y = M/H = Nu?/3kT = CIT
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Quantum Theory of Magnetism

So far we describe materials using a macroscopic moment, . In
paramagnets if an external field is applied then a Zeeman energy
splitting is induced in the energy levels.

Ngup

This modifies M = tanh(gugH/2kT) ~ N(gug)*H/4kT,

: JEEg 10 SOS P RenE R 1)
withg =1+ and Bohr magneton
I CERED)

fg = el2me = —0.927 * 10~Yerg/oersted. This is because there
are two levels separated by the external field.

S,:=1/2

Sz - '1/2

how =2ugH




H

H

H

Quantum Theory of Magnetism

So far we describe materials using a macroscopic moment, y. In
paramagnets if an external field is applied from internal mechanisms,
such as with atomic doping or substitution, then anenergy splitting is
also induced in the energy levels.

This modifies M = NgJugB;(x), with Brillouin function
20+ 1 x2J+ 1) 1 X
B;(x) =

ctnh( ) — —ctnh( J) and
¥~ NJ(J + 1)g*uz/3kT.

2J i =0
This method could be used to probe, for example, the insertion of rare

earth 1ons 1n matrix.

S,:=1/2

Sz - '1/2

how =2ugH
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Ferromagnets

Can be empirically understood from Curie-Weiss law, with the applied (whether
C C

P Rl

Quantum mechanically we must consider taking a paramagnet and adding an

internal or external) field Hy = AM ~ kT,/gSugso that y =

additional energy term, the exchange integral J to account for electron-electron
“exchanges.” This term depends on spin, orbit, lattice energies.

3.5*10-6 205k (S=1)

8.6*10-6 230k (S=1/2)




Crystal Structure

+ For example, the NaCl and CsCl structures, cubic.

Silicon

https://www .beautifulchemistry.net/crystal-structure
https://en.wikipedia.org/wiki/Crystal_structure



Crystal Structure

Various types of known lattices

Miller index planes

https://en.wikipedia.org/wiki/Crystal_structure

Crystal family | Lattice system | Schonflies

triclinic

monoclinic

e~ ——

orthorhombic

tetragonal

rhombohedral

hexagonal

hexagonal

14 Bravais lattices

Primitive | Base-centered | Body-centered | Face-centered
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The Reciprocal Lattice

A way to describe the lattice. For example, a, b, ¢ are primitive

translations of the crystal lattice. ‘ ‘
gt Rags=:hEshe=cits c:=sl=and

Qi DE=2 0 P =S IR F CF=¥D X e —" G v~ el

g DGl ERX QT aXxb ‘
O e e = e e}
a-bxe a-bxc a-bXce Reflectéd wave
From this construction, the vector r*(hkl) from the origin to the point ‘

(h.k,I) of the reciprocal lattice is normal to the (hkl) plane of the crystal
lattice. The length of the vector r*(hkl) is equal to the reciprocal of the
spacing of the planes (hkl) of the crystal lattice. ‘

dilebi=SRa = a th =" ]

Normal to reflecting

Incident wave



The Reciprocal Lattice

The Bragg condition can then be generally written as

(k + G)? = k? or 2k - G + G? = 0 where G is 27 times the
vector from the origin to a lattice point in the reciprocal lattice,
and k is the propagation vector (of magnitude 27/ 4).

H

H+

An important example is one of the face centered cubic lattice direct lattice: reciprocal latfice:

fcc with edge length a bcee with edge length 4n/a

with reciprocal lattaice equal to the body centered cubic lattice.

e N\ N\ ) N\ N\ i N\ N\

a 7)
aI:E-(y+z),azzz-(x+z),a3=5-(x+y)

H+

LY AN R P el i s T oV sl S L A | i PR STy e AT et R
bj=—-ayXa;= ——( x+y+z)b2 e O ek —(x—y+z)bg = s e el Y )
a’ a a’ a a3 ane

H+

https://www.physics-in-a-nutshell.com/article/15/the-reciprocal-lattice



Point Groups

Mathematically are matrices that satisfy y = M x
And is described as a group of geometric symmetries that keep at least one point fixed.

For example the rotation matrices in our spin discussion of the Stern-Gerlach experiment with 4 = 1.

FIG. 1. Stereographic projection of the symmetry ele-
ments of the icosahedral group m35.

Calcite image from Aldoaldoz


https://en.wikipedia.org/wiki/Point_group
https://en.wikipedia.org/wiki/Point_group

Quasicrystals

Quasicrystals [From the Website]. In 1982, D. Shechtman observed a diffraction pattern that he hardly believed when he
was using electron diffraction to study a fast quenched Al-Mn alloy (above image). The spots were as clear as the
diffraction spots from crystals, but what confused him was the decagonal symmetry, which was impossible for crystals.
Shechtman immediately realized that this pattern should imply a totally new solid structure, ordered but not periodic, and
which was why it still generated clear diffraction patterns. Shechtman published the result in 1984. Scientist named this
type of material “quasicrystals” and realized its similarity to Penrose pattern (p100). The discovery of quasicrystals
triggered intense debates in academia. Many scientists, including L. Pauling, the two-time Nobel Laureate, denied its
existence. He criticized that “No quasicrystals but only quasi-scientists.” However, more and more quasicrystals were
discovered. In 1992, the International Union of Crystallography revised the definition of crystals and included the
quasicrystal into the new definition. In 2011, Shechtman received Nobel Prize in chemistry for his contribution in
quasicrystals. The establishment of quasicrystal is a typical example of a new idea challenging old ideas in the history of
science. [Figure reference: Shechtman, D. et al. Phys. Rev. Lett. 53,1951 (1984)]

[Abstract from the PRL Paper] We have observed a metallic solid (Al-14-at.%-Mn) with
long-range orientational order, but with icosahedral point group symmetry, which is
inconsistent with lattice translations. Its diffraction spots are as sharp as those of crystals but
cannot be indexed to any Bravais lattice. The solid is metastable and forms from the melt by
a first-order transition.

https://www.beautifulchemistry.net/crystal-structure

FIG. 1. Stereographic projection of the symmetry ele-
ments of the icosahedral group m35.
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The Band Theory of Solids

Free electron theory of metals: the assumption is that weakly bound valence
electrons of the atoms composing the metal are not bound to particular atoms but
move throughout the entire solid. Equivalently, the electron moves throughout the
metal in a constant electrostatic potentail.

At the boundaries of the metal the potential will rise rapidly because of the net
electrostatic force acting on an electron at the boundary. Thus, in this model, the
electrons in a metal are treated like a gas composed of non-interacting spin-1/2
“fermions” confined to a three-dimensional box.



Free Electron Theory of Metals

n’h? e
e T e Py o i) B0 T g T
8mI2 )

Ao

generalized to a 3D infinite well of side 1 as E, = (n,% +n2+ n§>EO, i =

. For example: a 1D infinite square well of length 1 has energies £, =

R For each n in X,

y, Z, the possible values are integer numbers and so a different number of states may in fact have the
same energy, a situation termed “degenerate”.

(1,2,1) (1,1,2)
(2,1,2) (1,2,2)

(1,3,1) (1,1,3)
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Free Electron Theory of Metals

In a metal or gas molecules in a container, given in a box of length I, where 1 is made very large, the
number of states (and ultimately electrons) is found by taking

8mi?
h2

1
N=\/n£+ny2+n§, number o f states dS =§(47rN2dN) = %deN — N?= n,%+ny2+"§ = E<

1
8mi% \ 2 ik
( v ) dE z [ 8mi? 8m12\2( dE\ 2z’C2m)?
dN = e ) = E> dE
2Ez 286\ h? B B h?
27V (2m)
h3

>inEt0E+dE.

w M=

S

F

| —

iF the volume V=13, the density of states g(F) =
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Specific Heat of Solids

The molar specific heat at constant volume of a solid is defined as
1 [ 0E,

C,, =
N

%

Classically considering the 3N modes of a crystalline solid, the expected value of
C,, = 3R, the ideal gas constant.

Law of Dulong and Petit

Silicon
specific
heat

Copper
specific
heat

.%” Approaches
Dulong-Petit
at high temp

)
o
&
x
~
<
>
O

Low temperature Departs from Debye
T2 behavior matches -4 model at low temp
Debye model where electron specific
heat contributes.
10°  10° 10’
T3 (K3)
after Rohlf
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Examples: Dulong-Petit Law

Imagine a crystal lattice as a system of regularly spaced atoms connected by springs.

1 1
J = %<p§ + py2 ar p22> “E E(KXX2 aF Kyy2 + Kzzz)

kT
From Equipartition Theorem, E, ., = NO(6) <7> = 3NykT.

. g . S dEtot ¥ s
The molar specific heat is C}, = = 3Nyk = 3R.

This expression 1s known as the Dulong-Petit Law.
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Examples: Diatomic Molecule Specific Heat

&

The diatomic molecule, free to rotate but not to vibrate.

Let’s find the molar heat capacity of a diatomic gas.

| | 1 R/2

The energy of one diatomic molecule is £ = — ( p)% A py2 ¢ pg) +—1 e AL -'-;a)z. ./
2m \ ' b e e

The Equipartition Theorem says that effectively each degree of freedom adds 'z kT

kT 5
of energy so that the energy of one mole of gasis E, , = Nyn <7> = ENOkT
G E TS 5

Then the molar specific heat Cy, = = ENOk = ER .

R/2
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Examples: Induced RMS Voltage in RLC Inductor

from Thermal Energy

Imagine a high-Q RLC circuit at some temperature T.

The rms value of the induced voltage in the inductor from
thermal fluctuations can be estimated with the

Equipartition Theorem.
1 1
e e —lL(ﬂ) i
e e e SR S )
0 0

Wy = a high quality factor circuit is tuned to

VJIC

resonance, and the voltage across the inductor is

[ kT
Vi =woll — Viavg = a)ngT or Vy,rms = wy\/ LkT = v
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Counting Particles: Maxwell-Boltzmann
Distribution

We assume statistically that particles have an “intrinsic probability” gi of occupying
the ith cell.

This probability is a counting P, = chiols Sroks

niny e
with the constraints that 2 n, = N and En = FE;,

This counting formula is rewritten in the following way
IR

E Tl = Znilngi— Zln = Z:n,-lngi— an-ln n; + an- = Znilngi— an-ln n;, — Al(an‘_N) — AZ(ZEini—Ewt)

In

with objective to maximize the probability = finding that
Thi= [ P WL T



Fermi Dirac Distribution Function

1 Fermi - Diract Distribution

E-E
exp< kTﬂ)) e

+ Blue-T>0K
= Oranse’ — TE—(Ks

Frp X
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Total Number N of Fermions and Its Energy

[ 47tV(2m) :

exp(E — E/) h3

N=2 J Frpg(E)dE =
: —— 4/ 1

4nV(2m)% T
0

aV

As the temperature increases, the Fermi energy remains about equal to E .

T NN E
Thus, Ef(): 8
‘ 144

(3 £,



Band Theory of Solids

E»

Ec 1ev

E:

Ec
5eV
. EV

+ Conductors + Jnsulators = Semiconductors



Band Theory of Solids

.E2 .

+ Conductors = Insulators

We can estimate the density of carriers,
electron and holes.

n, = fFDg(E)dE

Ee / /
g LV = (1= fep)g(ENIE

*

Semiconductors



Optoelectronics

+ Recall our discussion of the hydrogen atom and molecule.

" %

e
SS NN

P s
v RN W

o
()

(=]
o

Energy (Rydberg units)
¢ o
2 :
Absoarption coefficient; nk

=
0

5 7. : 4000 - 5000 7000
. (o8 7 Ay —>
Internuclear separation (atomic units) : : |
!"uyt»;. 12.4. Optical absorption coefficients for copper, silver, and gold.  (After
Minor and Meier.) The point for copper denoted by a hollow square is from work

Fig. 123." Energy bands in copper as a function of internuclear separation,
[After H. M. Krutter, Phys. Rev. 48, 654 (1925).] : by Lowery, Bor, and Wilkingson, using a lightly polisked surface.

Reddish color of Cu comes from strong absorption in the
blue-green spectrum, onset at 575 nm with 2.1 eV

The d band and s band are thought to overlap
The 3d band estimated as 3.46 eV in width and the Fermi
surface lying in the 4s band is 3.7 eV, above the 3d band. For

free electrons the Fermi surface is estimated at 7.1 eV Ag :
‘ 1.012 0.992 0.994 .

Cu Ap b ul oA




SEMICONDUCTQOR RECTIFIERS AND TRANSISTORg

PN Junctions

+ For rectifiers,

d’h AxNe | __rNe
V- D=4rp > —=—F @ =———
doss € €

meaning the thickness is then

D = (e¢y/2xre N )12 with the thickness forming
a barrier layer that acts as an insulator (creating
or allowing the voltage drop across the contact

region)

x2

!
|
o
°
=
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2
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o

The net current is
T i o oL e v

H+

Potential energy of a hole ~—»

Distance =

Fig. 14.8. Dependence of recombination I and generation I, hole currents across

a p-n junction upon applied voltage bias. The inserts show the distribution ©

current carriers. (a) Thermal equilibrium, no bias. (b) Reverse bias. (¢
Forward bias. (After Shockley.)
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PN Junctions

The net current 1s
Pl N pleseluclieckiciai

In forward bias, recombination current
e eVIkT o eVIkT
Ir_Ige = Ir—J[g—Ig(e — 1)

depends on generation current.

The total current
I=Ie""-1)=1,+1,=p,le|D,/L,+n,|e|D,/L (" —1)

—

2
o
' —
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>
oo
=
@
c
@
=
=
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a

Potential energy of a hole ~—»

Fig

a p-n junction upon applied voltage bias. The inserts show the distribution ©
current carriers. (a) Thermal equilibrium, no bias. (b) Reverse bias.

Potential energy of a hole —

SEMICONDUCTQOR RECTIFIERS AND TRANSISTORg
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- 14.8. Dependence of recombination I#and generation /, hole currents acro®
(e

Forward bias.A (After Shockley.)




[_.uminescence

+ An example 1s to consider the sulfide phosphors, ZnS:Ag, ZnS:Cu. Here the
activators are Ag and Cu. The ZnS is either a cubic-zincblende (3.64 eV, 3410
Angstrom) or hexagonal-wurtzite (3.7 €V, 3350 Angstrom) structure. From
crystalline imperfections the excitation, via interbank transitions, at 3650 Angstrom
are possible.

4500 5000

Wavelength (ngstroms) https://www.youtube.com/watch?v=_FXukyeNEFQ

Emission spectrum of Zn8 coutaining chloride and 0.01 percent copper




Optoelectronics

+ Concerned with the optical properties of novel materials, specifically often metal-
semiconductor combinations or junctions, such as the following structure:

llfn(ka I‘) = eXP(lk ’ r)unk(r)a un(ka I') e unk(r o R)

E, = 1.798¢eV

[48¢ i+ : )
GlX s Vs Z) = 73 sink,x - sinkyy - sink,z.

FIGURE 1.5 Quantum well structure.




Quantum Wells

+ In 1D, 2D, 3D the density of states (density of electrons follows the following
structure).

Energy (eV) Energy (eV)
(b) (c)

FIGURE 1.7 Density of states for (a) one-, (b) two-, and (c) three-dimensional quantum
wells.

+ Understanding the electron density and effective mass (what kind of material from the periodic
table) 1s the first step in determining the quantum well behavior, from conduction to optics!
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Double Well Heterostructure

Double well and the refractive indices

p-Cladding | Active | n-Cladding
. Layer

Layer

Layer

ldn | J |
\‘-—l": - G S -
(di] ed o [ 7l

S ' n
+ ﬁsp -
Tph Tr

J is the injected current density,
d the active thickness, G(n) the
amplification rate due to
stimulated emission, 7, the
carrier lifetime, I',, the optical
confinement factor of the active
layer, 7, the photon lifetime, f,
the spontaneous emission
coupling factor, and 7,the
radiative recombination lifetime



Double Well Heterostructure

ot
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+ Current- Voltage n 1
P 7, 'aG(n) — 1/7:ph ’

S=-8

)

Characteristics
+ Under forward bias, V >0, I=eV, [G(n)S + 1] ;

n

w
o

the hole concentration in the
n-region is increased, so that
the carriers in the n region
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have a concentration as 0 02 04 06 08 1.0 1.2

+The current as a function of ‘ Applied Voltage V (V)

the VOltage is then Written FIGURE 6.4 Current versus voltage (/-V) characteristics.

explicitly Conventional light diodes operating at
room temperature have electron
concentrations 101! /cm3 with 1 ps
photon lifetime, 4 € resistance, 3.5
(effective) refractive index. The
electron group velocities 109 cm/s.

nieeV/ZkBT G(nieeV/2kBT)

. [ G(niecV/?eTy — 1/1,

I =eV, I:_,Bs




